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Abstract—Thermal imaging has become a vital tool for ana-
lyzing temperature variations in various fields, including medical
diagnostics, industrial inspection, and environmental monitoring.
However, the application of homography techniques in the ther-
mal imaging domain, particularly for photovoltaic (PV) panels,
remains underexplored. This paper presents a comprehensive
evaluation of state-of-the-art deep homography models, specif-
ically HomographyNet, in comparison with traditional feature-
based methods such as ORB+RANSAC and SIFT+RANSAC.
These methods are applied to close-range thermal images of PV
panels, and their performance is assessed using the mean average
corner error (MACE) metric. Extensive experiments analyze the
accuracy and robustness of these techniques, as well as the
influence of colormap representations on model performance.
Key contributions include the evaluation of homography methods
for thermal imaging, an in-depth analysis of colormap effects,
and the introduction of a novel high-resolution thermal image
dataset for PV panels. Results demonstrate that HomographyNet
outperforms traditional methods, achieving a MACE of 13.65
with the Noon dataset compared to 24.78 with the Morning
dataset. HomographyNets superior performance with magma
colormap makes it particularly useful in PV applications such as
identifying microcracks or hotspots in solar cells, where accurate
thermal image alignment can enhance the visualization of subtle
yet critical temperature anomalies.

Index Terms—Thermal imaging, photovoltaic panels, homogra-
phy, HomographyNet, feature-based methods, colormap effects,
deep learning.

I. INTRODUCTION

Imaging technologies have transformed visual data analysis,
offering unparalleled precision and detail across various appli-
cations [1]. Among these, thermal imaging excels in detecting
and visualizing temperature distributions, providing critical
insights for medical diagnostics [2], [3], industrial inspec-
tion [4], [5], environmental monitoring [6], and surveillance
[7]. Although some studies have investigated the integration
of thermal imaging with visible light modalities, research
on geometric transformations such as perspective correction,
homography, and image alignment in the thermal domain
is still limited. Photovoltaic (PV) panels, in particular, pose
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unique challenges due to their highly reflective surfaces, vari-
able operating conditions, and intricate cell structures. These
factors require precise image alignment to accurately detect
subtle temperature variations that reveal potential faults or
inefficiencies in solar cells [8]. Addressing this gap is crucial
for close-range PV panel inspections, as advanced thermal
image processing techniques are essential for ensuring the
efficiency and reliability of solar energy systems.

Homography, which involves mapping one planar surface
onto another, is a fundamental tool for tasks like image
stitching [9] and panorama creation [10]. However, applying
homography to thermal images presents unique challenges.
Unlike visible images that rely on color gradients to define
features, thermal images capture infrared radiation patterns
linked directly to temperature variations. This reliance on
thermal rather than color-based features limits the number
of distinct keypoints and often results in reduced texture,
low contrast, and fewer identifiable feature points [11]. These
constraints are particularly acute in thermal images of PV
panels, which tend to exhibit thermal uniformity, minimal
distinguishing features, and limited contrast variations [12],
[13], all of which complicate reliable feature matching and
homography estimation.

This work addresses the need for reliable homography
methods tailored to thermal imaging by evaluating both deep
learning (DL)-based [14]-[16] and traditional feature-based
approaches on thermal images of PV panels. Specifically, we
compare HomographyNet [17], a deep homography model,
with feature-based methods such as ORB (Oriented FAST
and Rotated BRIEF)+RANSAC (Random sample consensus)
and SIFT (Scale-Invariant Feature Transform)+RANSAC [18],
[19]. We also propose a custom dataset of high-resolution,
close-range thermal images of PV panels and analyze each
technique using the mean average corner error (MACE) metric
[17] across varied inspection scenarios.

Recognizing the limitations in feature richness inherent to
thermal images, we also investigate the role of colormap
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transformations. Translating temperature data into colormaps
enhances homography estimation by improving visual contrast
between distinct thermal regions, which in turn boosts key-
point detection and feature matching [20]. To ensure compre-
hensive evaluation, we tested all colormaps available in the
standard Matplotlib library, leveraging their diverse contrast
and color schemes to reveal subtle temperature patterns. These
colormaps contribute to more robust and reliable homography
estimation for thermal images, where contrast and texture are
often low.

Our contributions are twofold: First, we provide a compre-
hensive performance evaluation of DL-based and traditional
homography techniques for thermal data, detailing the adapta-
tions necessary to meet the challenges of PV panel inspection.
Second, we introduce a novel dataset of thermal images of PV
panels, representing diverse capture angles and times of day,
designed to reflect real-world inspection conditions. Together,
these contributions address a significant gap in thermal image
processing, advancing methodologies for precise alignment
and analysis in solar energy applications.

II. HOMOGRAPHY ESTIMATION TECHNIQUES

This section reviews homography estimation methods, cov-
ering feature-based techniques and advanced DL approaches.
It also addresses their core mechanics and challenges in
thermal imaging for PV panel inspections.

A. Feature-based Methods

Feature-based methods for homography estimation rely on
detecting, describing, and matching keypoints to compute
a homography matrix for image alignment. Techniques like
ORB and SIFT excel in handling rotation, scale, and illu-
mination variations, while RANSAC refines the homography
matrix by minimizing the impact of outliers, ensuring robust
alignment accuracy.

The ORB method combines the FAST (Features from
Accelerated Segment Test) keypoint detector with the BRIEF
(Binary Robust Independent Elementary Features) descriptor,
modified for rotation invariance. Keypoints are identified by
detecting areas of high contrast, and descriptors are repre-
sented as binary strings, making them efficient to compute and
match. The matching process typically minimizes a Hamming
distance:

dg (b1, by) = Zblm @ bolil,

where b; and b are binary descriptors, and & represents the
XOR operation.

SIFT, on the other hand, detects keypoints using the Dif-
ference of Gaussian (DoG) approach, where a scale-space
representation L(z,y, o) is constructed as:

L(z,y,0) = G(z,y,0) x I(z,y),

with G(x,y, o) being a Gaussian kernel of scale o and I(z, y)
the input image. The DoG is computed as:

D(x7y70-) = L(xv:%ko') - L('rai%o-)a

where k is a constant multiplicative factor. Keypoints are iden-
tified as extrema in the scale-space by comparing D(x,y, o)
across scales.

Feature-based methods excel in visible spectrum images
with rich textures and distinctive features but face challenges
with thermal images. The low contrast and limited texture
in thermal images reduce detectable keypoints and matching
accuracy. Additionally, the uniform temperature profiles in
PV panels hinder feature detection due to the scarcity of
distinct gradients required for reliable homography estimation.
These challenges highlight the importance of adaptations like
colormap transformations to enhance feature detection and
improve alignment in the thermal domain.

B. Deep Learning Methods

Deep learning approaches have advanced homography esti-
mation by enabling models to learn transformations directly
from image data, bypassing traditional keypoint detection
and matching. One notable model in this category is Ho-
mographyNet [17], a convolutional neural network (CNN)
that estimates relative homography between pairs of images.
Unlike conventional methods, HomographyNet operates on
stacked grayscale image pairs, directly outputting an 8-degree-
of-freedom homography matrix without relying on explicit
corner detection or iterative estimation. The network is trained
end-to-end on a large dataset of labeled images, allowing it to
generalize across various transformations.

While CNN-based models like HomographyNet have
demonstrated promising performance on visible light images,
their application to thermal images is under-explored. Thermal
images capture variations in heat distribution rather than color
gradients, leading to notable differences in texture, contrast,
and feature visibility compared to visible-spectrum images.
These differences introduce unique challenges for CNN-based
homography models, as thermal data often lacks the rich gradi-
ents and structural details that aid in feature extraction within
the visible spectrum. Therefore, assessing the adaptability and
effectiveness of DL methods for thermal homography requires
targeted evaluation, with possible adaptations such as input
transformations or colormaps to enhance contrast and feature
definition.

III. DATASET AND METHODOLOGY

This section details the dataset preparation and the imple-
mentation of the models.

A. Data Acquisition

Thermal images of PV panels were captured using a FLIR
Duo Pro R camera (640x512 resolution) under varying con-
ditions at 8:00 AM and noon to represent colder morning
and peak midday temperatures. The images were taken from
six distances (10 cm, 15 cm, 20 cm, 25 cm, 30 cm, and 35
cm) at multiple angles (0° and 30°) to introduce variations in
scale, proximity, and perspective, enabling a comprehensive
evaluation of the performance of homography estimation in
various scenarios.
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Fig. 1. Overview of the project workflow: from data acquisition to evaluating
homography estimation techniques on thermal images.

TABLE I
SIFT AND ORB MODELS AND PARAMETERS (WITHOUT THE DEFAULT
MODELS). PATCH SIZE IS REPORTED IN PIXELS; OTHER PARAMETERS DO
NOT HAVE UNITS.

Model
SIFT Level 1

Parameter Value
nfeatures 7000
contrastThreshold 0.005
edgeThreshold 5

sigma 2.6
SIFT Level 2 nfeatures 9000
contrastThreshold 0.003
edgeThreshold 7
sigma 2.8
ORB Level 1 nfeatures 7000
edgeThreshold 5
patchSize 20
ORB Level 2 nfeatures 9000
edgeThreshold 7
patchSize 40
ORB Level 3 nfeatures 11000
edgeThreshold 9

60

Applying colormaps is crucial in thermal imaging as they
enhance visualization by assigning colors to temperature data,
addressing the low contrast and texture inherent in raw thermal
images. This improved contrast between thermal regions helps
to detect keypoints, facilitating a more accurate homography
estimation [20]. We analyzed twenty-two distinct colormaps
to evaluate their impact on homography accuracy, identifying
those most effective for enhancing thermal data.

Each color-mapped image was converted to grayscale to
ensure compatibility across feature-based and DL methods.
This conversion preserves the unique intensity gradients and
contrast enhancements introduced by each colormap, opti-
mizing feature detection for ORB and SIFT, which rely on
intensity gradients for matching accuracy. Additionally, the
grayscale images align with HomographyNet’s single-channel
input requirement, enabling consistent and comparative eval-
uation across all methods.

Using a dataset generator adapted from [17], we created 710
image pairs with corresponding ground truth homographies,
divided into two sub-datasets: Morning (401 pairs) and Noon
(309 pairs), as shown in Figure 1. Each sub-dataset captures
variations in color mapping, angles, distances, and temperature
conditions, enabling a comprehensive evaluation of homogra-
phy estimation performance in thermal imaging for PV panel
inspection.

B. Implementation Details

1) ORB+RANSAC and SIFT+RANSAC: The ORB algo-
rithm was implemented using the OpenCV library to detect
and match keypoints, with RANSAC employed to estimate the
homography matrix by iteratively fitting subsets of matched
keypoints and discarding outliers, thereby improving robust-
ness to noise. Initially, ORB was configured with default
parameters, followed by fine-tuning across three increasing
levels of complexity (Table I). Each level involved adjust-
ing key parameters—specifically, ‘nfeatures’, ‘edgeThreshold’,
and ‘patchSize’—to control the number and distribution of
detected keypoints. Increasing ‘nfeatures’ at each level allowed
for a higher density of keypoints, which improves homogra-
phy accuracy in images with subtle details. Adjustments to
‘edgeThreshold’ and ‘patchSize’ enabled better control over
feature selection in high-contrast and low-contrast regions,
respectively, enhancing ORB’s performance across varied col-
ormaps.

Similarly, the SIFT algorithm was fine-tuned across two
configurations, with changes made to ‘nfeatures’, ‘contrast-
Threshold’, ‘edgeThreshold’, and ‘sigma’ parameters. Increas-
ing ‘nfeatures’ and lowering ‘contrastThreshold’ allowed for
detecting more fine-grained features, particularly useful in
low-contrast thermal images. Adjustments to ‘edgeThreshold’
and ‘sigma’ helped refine the selection of keypoints, improving
SIFT’s adaptability to varying thermal textures and enhancing
its accuracy in homography estimation. Homography accuracy
for both ORB and SIFT was evaluated against ground truth
matrices using the MACE metric on 5000 randomly selected
image pairs across 22 colormaps, providing a robust compar-
ison of performance under diverse visual conditions.

2) HomographyNet: HomographyNet was implemented in
TensorFlow and trained in Morning and Noon subdatasets,
each divided into 50% training, 25% validation, and 25%
testing. Training on an NVIDIA RTX 4090 GPU server
ensured sufficient processing power for the large dataset.
The model architecture, adapted from [17], features eight
convolutional layers with 3x3 filters and ReLU activations,
followed by two fully connected layers with 1024 units each.
Input images were resized to 128x128 pixels for compatibility
and computational efficiency. Training used stochastic gradient
descent with a momentum of 0.9 to balance convergence
speed and stability, while dropout (0.5) was applied after the
final convolutional and first fully connected layers to reduce
overfitting. HomographyNet’s performance was assessed using
the MACE metric for direct comparison with feature-based
methods. The architecture and parameters were adapted from
standard practices in homography estimation for visible light
images to accommodate the unique characteristics of thermal
data.

IV. RESULTS AND DISCUSSION

This section presents the experimental results for both the
Morning and Noon datasets, providing a detailed analysis of
performance across varying thermal conditions.
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Fig. 2. Mean MACE values achieved by feature-based methods across two
datasets, evaluated using various colormaps. The bars represent MACE values,
with the corresponding standard deviation values displayed above each bar.
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Fig. 3. Performance of Feature-based methods on the two datasets, evaluated
for angle of rotation and distance of the image. The bars represent MACE
values, with the corresponding standard deviation values displayed above.

A. Feature-Based Model Results

The performance of ORB+RANSAC and SIFT+RANSAC
methods was evaluated on the Morning and Noon datasets.
Figure 2 presents the top models for five colormaps based
on the lowest mean MACE values. In the Morning dataset
(left graph), SIFT+RANSAC with the cool colormap had a
stable mean score of 22.5 (std. 12.8). In contrast, the hot
colormap showed higher variability with a mean of 28.20
(std. 21.6). Jet and viridis colormaps had similarly high means
and variabilities. ORB+RANSAC followed similar trends, with
cool yielding the lowest mean and variability, while jer and
hot had the highest means and variabilities, indicating less
consistent performance.For the Noon dataset (right graph), the
best colormaps for SIFT+RANSAC were pink, cool, spring,
Jjet, and rainbow. The pink colormap had a mean score of 17.83
(std. 10.5), indicating uniform performance. Jet and rainbow
had mean scores around 23, with rainbow presenting higher
variability (std. 13.52). For ORB+RANSAC, the colormaps
spring, summer, autumn, parula, and hot were evaluated.
Spring and summer had lower mean scores of 17.20 and 18.57
while Autumn and parula had mean scores around 19, with
parula showing higher variability (std. 15.05).

Figure 3 shows notable performance variations when eval-
uating ORB+RANSAC and SIFT+RANSAC techniques on
images taken from different angles (0 and 30 degrees) and
varying distances from a PV panel. For ORB+RANSAC, the
cool colormap at 0 degrees yielded a mean score of 20.93 (std.
14.39), whereas the plasma colormap at 30 degrees showed a
higher mean score of 25.1 (std. 19.81). For different distances,
the cool colormap at 15 units had a mean score of 21.45,
while the rwilight colormap at 20 units exhibited the highest
mean score of 29.37 (std. 24.48). For SIFT+RANSAC, the
cool colormap at 0 degrees had a mean score of 24.32 (std.
14.84), while the summer colormap at 30 degrees resulted in
a slightly higher mean score of 24.94 (std. 16.84). Distance-

based evaluation showed the pink colormap at 10 units with
a mean score of 26.29, and the autumn colormap at 25 units
with a mean of 30.09.

On the Noon dataset, for ORB+RANSAC, the turbo col-
ormap at 0 degrees achieved a mean score of 24.29 (std.
12.13), while the deepgreen colormap at 30 degrees had a
lower mean score of 20.72 (std. 10.41).At different distances,
turbo at 30 units had a significantly lower mean score of 7.34
(std. 4.79) while the hsv colormap at 25 units scored 26.29
(std. 16.15). For SIFT+RANSAC, the rainbow colormap at 0
degrees produced a mean score of 21.04 (std. 1.43), while
viridis at 30 degrees scored 12.29 (std. 3.09). At different
distances,the tfurbo colormap at 20 units scored 21.40 (std.
3.18) and deepgreen at 35 units had the lowest mean score
of 10.79 (std.2.53). These results highlight the influence of
angles and distances on the performance of both techniques.

Training and Validation Errors Histogram of Mean Corner Errors

-- Mean

——Training Error ! ! '

0.25 — Validation Errop | -- Maximum i
- J -~ Minimum !

0.20 g — Line Graph :
S Mean =543 !
£0.15 1
&0 Max Value = 32.59 1
0.10 Min Value =0.81 |
i

0.05 |

|

0 20 40 60 80
Epochs

100

0 5 10 15 20 25 30

Mean Corner Errors

Fig. 4. Performance evaluation of HomographyNet: (left) training and
validation loss curves for Magma colormap and (right) histogram results for
the same model on the Magma colormap for the Morning dataset.

B. HomographyNet Results

HomographyNet was also evaluated on the two datasets.
Figure 4 illustrates the training and validation loss curves
(left) and test histogram results (right) for the best-performing
model, which utilized the magma colormap on the Morning
dataset. HomographyNet was tested on the datasets processed
with five colormaps: cool, hot, jet, magma, and viridis (see
Figure 5. Each colormap required approximately 8 hours of
training, and the magma colormap achieved the lowest mean
MACE of 5.43. For the Morning dataset, the colormap cool
achieved a MACE value of 5.89, and magma had the lowest
MACE value of 5.43. For the Noon dataset, cool had a MACE
value of 7.11, and viridis had the lowest MACE value of 6.39.
These results indicate that viridis consistently performed best
across both datasets, showing the lowest MACE values.

The evaluation of the HomographyNet on the two datasets
demonstrates significant variations in MACE values across
different angles of rotation and distances from the PV panel
(Figure 6). For the Morning dataset, the rotation angle at O
degrees yielded a MACE value of 3.42, while at 30 degrees,
it increased to 6.91. Distance-wise, a camera position at 10
units had a MACE value of 2.13, with the highest value of
6.19 at 30 units. In contrast, the Noon dataset showed more
consistent performance, with the rotation angle at 0 degrees,
resulting in a MACE value of 2.96 and 3.34 at 30 degrees. The
distance from the panel at 10 units had a MACE value of 2.72,
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while 35 units showed the highest MACE value of 3.67. The
results highlight the variability in HomographyNet’s accuracy
with changing angles and distances, emphasizing the need for
optimal parameter selection for improved performance.

HomographyNet was trained using single-channel raw ther-
mal images, following the same data preparation methodol-
ogy. Training results indicate that HomographyNet performed
better with the Noon dataset, achieving a MACE of 13.65,
compared to 24.78 with the Morning dataset. Additionally, the
model demonstrated poorer performance on the raw thermal
dataset than on the dataset with colormaps. HomographyNet’s
superior performance with magma colormap makes it particu-
larly useful in PV applications such as identifying microcracks
or hotspots in solar cells.

C. Discussion

Our analysis highlights that colormap selection, thermal
conditions, and acquisition parameters such as angle and
distance heavily influence homography estimation for thermal
images. This complexity is critical for PV panel inspection,
where subtle thermal variations are key. Both feature-based
and DL-based approaches show strengths and limitations,
underscoring the need for adaptable strategies to enhance
accuracy in thermal imaging.

a) Influence of Colormap Selection on Feature Detection:
A key insight from our results is that colormap selection
significantly enhances feature visibility and improves model
performance in homography estimation. Thermal images lack
the distinct gradients of visible light images, crucial for
keypoint detection and matching. By mapping thermal data to
specific color palettes, colormaps enhance visual contrast and
introduce artificial gradients, enabling feature-based models to
detect and match keypoints more effectively. Notably, the cool
colormap yielded stable, low MACE values across both SIFT
and ORB-based models, which we attribute to its capacity to
produce balanced contrast without introducing excessive noise.
In contrast, colormaps such as jet and hot, while effective

in certain high-contrast scenarios, often introduced variability
due to intense gradients that could either enhance or obscure
keypoints depending on the specific thermal patterns present.
These results suggest that colormaps with smooth, balanced
color transitions are better suited for consistent feature ex-
traction in thermal imaging, especially for scenarios with low
inherent contrast like PV panels.

b) Temporal Thermal Variability and Homography Per-
formance: The observed performance differences between
Morning and Noon datasets underscore the need to consider
environmental thermal variations when applying homography
models to thermal images. During the morning, when temper-
ature gradients across PV panels are relatively low, models
often demonstrated higher variability, as evidenced by the
performance of hot and viridis colormaps in SIFT+RANSAC
and ORB+RANSAC. The Noon dataset, characterized by
more distinct temperature distributions, enabled more stable
keypoint detection and matching, particularly with DL-based
HomographyNet, which benefited from the well-defined ther-
mal patterns that emerged under peak sunlight conditions. This
highlights the model’s sensitivity to temporal thermal patterns,
suggesting that deploying homography models during periods
of maximal contrast can enhance alignment accuracy.

c) Impact of Angle and Distance on Model Robustness:
Variations in angles and distances from the panels further
influenced model performance, suggesting that acquisition
parameters should be carefully controlled or adjusted based
on specific inspection needs. For both ORB+RANSAC and
SIFT+RANSAC, greater distances introduced a tendency for
higher MACE values and more significant variability, particu-
larly with colormaps like autumn and twilight, which produced
strong gradients but less reliable keypoints at larger scales.
This is likely due to the limited resolution of finer features in
thermal imaging at a distance, which reduces the precision of
keypoint matching. Conversely, close-range images provided
better feature clarity, as indicated by the stable MACE values
for colormaps such as cool and spring at shorter distances. Ho-
mographyNet also demonstrated sensitivity to these variations,
with lower MACE values at 0 degrees and distances under 20
units, highlighting the importance of acquiring images with
optimal angles and proximities to maximize model reliability.

d) Deep Learning versus Feature-Based Methods: Adapt-
ing to Thermal Imaging Conditions: While traditional feature-
based methods like SIFT and ORB provide adaptability
through parameter tuning, our results suggest that they may
be less effective under the low-contrast, high-variability con-
ditions typical of thermal imaging without substantial prepro-
cessing through colormaps. DL-based HomographyNet, how-
ever, showed a consistent advantage in adapting to colormap-
enhanced thermal images, with the magma and viridis col-
ormaps yielding the lowest MACE values across both datasets.
This suggests that DL models may inherently benefit from
the spatial patterns introduced by colormaps, learning to
identify thermal anomalies and align them with greater ro-
bustness. However, HomographyNet’s performance declined
on raw thermal images without color mapping, underscoring
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its reliance on thermal feature richness and the importance of
controlled preprocessing for effective generalization.

e) Generalization and Practical Implications: The vari-
ability introduced by different colormaps and acquisition set-
tings raises critical questions about the generalizability of
homography estimation models in real-world thermal imaging
applications. Our findings suggest that no single colormap
or acquisition parameter set is universally optimal; instead,
the most effective setup is highly dependent on the specific
imaging conditions and objectives. For instance, in appli-
cations where thermal features are subtle, colormaps like
cool and spring are advantageous, as they provide balanced
contrast without obscuring finer details. In contrast, for high-
contrast conditions, colormaps such as hot or jet may offer im-
proved performance but risk greater variability. Thus, selecting
and adapting colormaps based on environmental conditions,
temporal variability, and acquisition settings is crucial for
achieving robust homography estimation in thermal imaging.

V. CONCLUSION

This study underscores the need for adaptive and flexible
approaches to homography estimation in thermal imaging,
particularly for PV panel inspection, where subtle thermal
variations are critical for accurate analysis. Our evaluation
reveals that homography performance is closely tied to col-
ormap selection, time of day, and acquisition parameters, all
of which must be carefully optimized to achieve reliable
results. Traditional feature-based methods like SIFT demon-
strate robustness across conditions while fine-tuning ORB
models offers improved accuracy under specific scenarios.
Colormaps such as cool, spring, and summer were shown
to produce consistently stable results, whereas jet and hot
introduce variability, emphasizing the need to tailor colormap
selection to enhance feature visibility in thermal images. This
adaptability is crucial for both feature-based and DL methods,
as optimized colormaps can significantly improve keypoint de-
tection and homography estimation. Notably, HomographyNet,
while effective with colormap-enhanced images, exhibited lim-
itations with raw thermal data, suggesting further refinement
is necessary for DL models to achieve robustness in diverse
thermal imaging conditions. Future work will focus on refin-
ing pixel ranges to reduce shadows and sunlight reflections,
exploring additional colormaps to optimize homography esti-
mation, and implementing dynamic colormap selection based
on real-time thermal conditions to enhance model robustness.
Additionally, testing alternative deep learning architectures on
the dataset may improve upon HomographyNet, advancing
the precision and reliability of homography estimation for
PV panel inspection and related applications. Overall, this
study encourages adaptive homography techniques in thermal
imaging, emphasizing the impact of optimized colormaps and
acquisition parameters.
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