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Abstract—In spatial navigation, the shift from manual car-
tography to digital map representations has revolutionized how
we interact with and comprehend outdoor and indoor envi-
ronments. While digital mapping has substantially advanced
outdoor navigation with robust techniques like satellite imagery
and sophisticated data labeling, the full potential of indoor
digital mapping remains untapped. Accurate indoor mapping
promises to enhance the operational efficiency of mobile robots,
improving their ability to interact with human environments,
and bolstering emergency response capabilities. However, its
realization is impeded by the complexity of current methods
and the need for heavy manual labor, expert knowledge,
and specialized equipment. To address these challenges, we
introduce Text2Map — a novel methodology that harnesses
natural language navigational instructions, the power of off-the-
shelf Large Language Models (LLMs), and Few-shot Learning,
to create graph-based digital maps of indoor spaces. This
approach simplifies the mapping process for widespread use,
leveraging crowd-sourceable ubiquitous navigation instructions
as a data source without requiring specialized map data
formats or hardware. Our paper presents the Text2Map system
architecture, details the creation of the first dedicated dataset,
and evaluates the system’s efficacy, highlighting the substantial
potential and scalability of our approach. Text2Map achieves a
Graph-Edit-Distance (GED) ranging from 0.5X to 2X the total
number of regions in a building and an Edge Similarity score
between 0.87 and 0.9. These results highlight the precision,
robustness, and effectiveness of our methodology. Our work
paves the way for a more accessible and streamlined approach
to indoor digital mapping, setting the stage for broader adoption
in human and mobile robot navigation applications.

I. INTRODUCTION

Mapping has always been a cornerstone of understanding
and using spaces effectively. The transition from traditional
cartography to digital mapping has leveraged technological
advancements to offer a more comprehensive view of our sur-
roundings, enhancing efficiency across various applications,
from personal navigation to intricate logistic operations [1],
[2]. This evolution has benefited outdoor navigation through
satellite imagery and advanced data labeling techniques.
However, the potential for digital mapping to transform
indoor spaces has yet to be realized. Accurate indoor maps
promise to boost the operational efficiency of autonomous
systems, where precise and comprehensive abstractions of
spatial layouts are crucial for navigation, task execution, and
other indoor smart applications [3], [4]. By leveraging indoor
maps, humans and mobile robots can optimize routes [5], [6],
aid in indoor localization solutions and applications [7]-[9],
and interact more seamlessly in human-centric environments.

1School of Computer Science, Carnegie Mellon University,
{akarkour, kharras, efeoflus}@andrew.cmu.edu

Realizing this potential depends on streamlining the process
of creating indoor maps. This involves minimizing the re-
liance on specialized knowledge and equipment, reducing
costs, and making digital mapping more accessible.

The methods for creating digital indoor maps are diverse,
each with its own set of tools and outputs (Section II). Mod-
eling techniques rely on specialized software or scanning
equipment to construct representations such as Computer-
Aided Design (CAD) drawings, Building Information Mod-
eling (BIM) structures, Point Clouds, or Texture Meshes.
Although these models provide detailed representations, they
often lack semantic and topological context, essential for
various applications [1], [2], [10]. On the other hand, indoor
map data formats such as CityGML, indoorGML [11], and
Apple’s IMDF offer an abundance of semantic and topo-
logical information but come with their own challenge of
complex formats that require expertise to handle them [12].
The challenges of creating indoor map representations stem
from the intricacies of both modeling and data formats.
The reliance on experts familiar with specific software,
data formats, and scanning hardware, escalates costs and
hinders the widespread adoption of digital indoor mapping
[13]. These complexities highlight the need for low barrier
solutions to create navigable indoor maps, that do not require
deep expertise in map data formats or specialized hardware.

In this paper, we present Text2Map, a novel solution
that simplifies the creation of digital navigable indoor maps
without requiring expert knowledge or specialized equip-
ment (Section III). By leveraging simple natural language
navigation instructions, and the capabilities of off-the-shelf
Large Language Models (LLMs), Text2Map eliminates the
complexity associated with advanced map data format con-
struction. Text2Map contains a Prompting Engine that refines
and generates navigation sequences that cover the indoor
space and utilizes Few-shot learning to instruct the LLM.
This results in a graph-based Connectivity Matrix that serves
as the building’s map. Adopting human language negates
the need for expertise in specialized software or hardware.
This approach is effective because navigation instructions are
widely used, providing us with a large amount of data that
can be captured through crowd-sourcing. This simplification
will expedite the creation of navigable map representations
and significantly reduce costs. These improvements are es-
sential for large-scale buildings, buildings in locations where
obtaining or using advanced scanning tools is challenging,
and buildings that frequently change their indoor layouts,
such as exhibition centers. Furthermore, a graph-based map
format composed of matrices and vectors is well-studied and



readily adaptable by various graph algorithms to execute
different navigation tasks, thereby eliminating the need to
construct complicated specialized parsers.

We detail the creation of the Text2Map Dataset, a pio-
neering dataset that uses human navigation instructions to
build connectivity matrices (Section V). Text2Map encom-
passes 90 buildings and 22k unique instructions, generating
an exponential number of unique navigation sequences per
building. We evaluate Text2Map using Graph-Edit-Distance
(GED) and Edge Similarity metrics, conduct an ablation
study, and evaluate performance across various scenarios and
building sizes. Our findings show that Text2Map achieves a
GED of 0.5X to 2X the number of regions in a building
and an Edge Similarity of 0.87 to 0.9, demonstrating its
effectiveness and efficiency compared to human effort.

We highlight our key contributions as follows:

o Text2Map: a novel solution utilizing off-the-shelf LLMs
and Few-shot learning to generate digital navigable indoor
maps from natural language navigational instructions.

o Built Text2Map Dataset, the first dataset dedicated to
generating indoor connectivity matrices from human navi-
gation instructions, and established a comprehensive eval-
uation framework with GED and Edge Similarity metrics.

¢ Conducted a thorough experimental analysis, including an
ablation study to assess the significance of Text2Map’s
components and experiments to evaluate its performance
across various conditions and building complexities.

II. RELATED WORK

This section explores the evolution of indoor mapping
from robotics to data-only methods, emphasizing the reduced
need for specialized hardware. We also discuss how LLMs
can overcome the limitations of data-only methods, similar
to their use in other graph-related tasks.

In the field of mobile robotics, effective navigation de-
pends on the robot’s ability to sense and model its environ-
ment, facilitated by Simultaneous Localization And Mapping
(SLAM) [14]. This process, essential for integrating sensory
data and self-localization, has driven progress in spatial map-
ping, allowing robots to navigate, plan routes, and circum-
vent obstacles. However, these spatial maps, focused solely
on geometric data, lack semantic details, limiting their utility
in human-centered applications and impeding interactive
human-robot scenarios. To bridge this gap, enhancements in
semantic indoor mapping have been introduced, where an
additional layer of semantic information is integrated into
the mapping process. This augmentation can involve direct
human input through dialogue with humans, as demonstrated
by Bastianelli et al. [15], or by using machine learning
models for region recognition and scene understanding.
Techniques range from constructing hierarchical 3D scene
graphs that elucidate room relationships [16] to deploying
vision-to-language models for scene description [17] and
the use of region classifiers to label RGB-D observations
[18]. Despite the depth of study on indoor mapping within
robotics, the reliance on advanced hardware, such as robots

and sensors, still poses a barrier to widespread adoption,
limiting the ubiquity of these solutions.

To eliminate the need for specialized equipment, such
as robots and scanners, to construct map representations,
data-only indoor mapping methods leverage readily available
information and data about a building to build indoor map
representations. The most common approach is to create
map data formats such as CityGML, indoorGML manually
[11], and Apple’s IMDF, which provide rich semantic and
topological details but require extensive manual effort and
specialized knowledge of the data formats [12]. Recent
advances propose the use of natural language descriptions of
the characteristics of buildings, followed by deep learning
models such as Stanford Scene Graph Parser [19] or Gener-
ative Adversarial Networks (GANs) [20], to generate graph-
based indoor maps. This strategy reduces the reliance on
complex data formats. Still, it requires detailed knowledge of
the space’s design and function, posing challenges for crowd-
sourcing such tasks or generally assigning them. Moreover,
training these models necessitates large datasets of indoor
layouts, which are challenging to compile due to privacy
and data sensitivity concerns.

Our method simplifies the complexity of data collection
by using straightforward navigational instructions that can
be easily crowd-sourced or authored by anyone. To trans-
form these simple pieces of relational data into graph-based
maps, we leverage the capabilities of LLMs, which excel at
extracting accurate relational information and converting it
into graphical representations. Integrating LLMs into graph-
based tasks has significantly propelled the field of graph-
based applications forward, introducing innovative ways to
augment and improve algorithms that use graphs and ana-
lyze relational data to generate graph-based representations.
For example, utilizing LLMs like GPT-3.5 and GPT-4 has
enhanced graph neural networks (GNNs) by processing and
improving text-based node attributes for tasks such as paper
classification, thus boosting GNN performance [21], [22].
On the other hand, LLMs have facilitated graph construction
for applications such as market analysis by analyzing textual
reports and identifying connections between different entities
[23]. Overall, this synergy between LLMs and graph mod-
els boosts existing algorithm performance and opens new
avenues for analyzing relational data.

III. TEXT2MAP: COMPONENTS AND DESIGN

In this section, we delve into the components of Text2Map
as depicted in Fig. 1, highlighting their functions and the
challenges that influenced our design and technical decisions.
We begin by formally defining the task, and then discuss the
input, prompting engine, and graph extractor components.

A. Formal Task Definition

Given a navigation sequence N = (nq,no,...,ny), where
L represents the length of the sequence, and each n; is
a natural language navigation instruction for known start
and end points, with the entire sequence covering the entire
indoor space. Additionally, given a sequence of room-like
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Fig. 1: Text2Map Overview

regions R = (r1,ra,...,7), where M denotes the number
of room-like regions in the indoor space, and each r; is a
descriptive sentence formatted as “region r; is a X”, with X
being the label/name of the region. The task of the model is
to process these inputs and generate a graph GG, where

G = (w11, 212, ., T10M1)1,
<£E217I22, e ,932M>2,
s
(Ta1, T2, - T M)

, and x;; € {0,1}. In this graph representation, region ¢ is
connected to region j if and only if z;; = x;; = 1.

B. Input

Our input for creating navigable map representations con-
sists of two primary components. The first part is a textual
description of the indoor space articulated through navigation
instructions. Each navigation instruction has known starting
and ending room-like regions and spans multiple regions
across the path it describes. The second part includes meta-
data about the building’s structure, specifically detailing the
room-like regions within the building and their corresponding
labels. It is reasonable to expect that individuals tasked
with mapping an indoor space can navigate through it and
provide descriptive instructions on moving from one location
to another. Additionally, it is generally feasible for them to
gather information about the various room-like regions they
aim to include in their navigable map.

C. Prompting Engine

The Prompting Engine, which includes the Instruction
Refiner, Sequence Generator, and Prompter, processes raw
natural language navigation instructions along with the build-
ing’s metadata. This engine enhances and supplements the
instructions with the necessary data, facilitating the LLM
to generate precise indoor maps efficiently. We discuss the
functionality of each component and the challenges it solves.

1) Instruction Refiner: One of the main challenges of our
task is that people do not necessarily refer to the regions
they are in while annotating navigation instructions but
rather to the environment around them, i.e., the objects
within each region. Not referring to the regions would make
our task harder because the graph generator would need to
infer some regions only based on the objects in it. As seen
in the example below, this navigation path covers regions 8
(lobby), 13 (living room), 10 (stairs), and 7 (hallway), but
they are not directly mentioned in it.

Walk past the dining table and head up the stairs. Stop
at the top of the stairs.

To address this issue, we define an Instruction Refiner
component, that complements each instruction with extra-
regional clues, and highlights regions that can be inferred
from their environmental description. Even though any
navigation instruction has known starting and ending
regions, these regions may not be explicitly mentioned, as
the person describing might assume that the agent navigating
the space is already at the starting region and can deduce
that they arrived at the ending region once the instruction
ends. We refine each instruction by adding the start and
end regions which are given by definition (section III-B).
In addition, the Instruction Refiner scans each instruction
for the mentioned regions (key-words search) and aids it
with its unique /D, obtained from the building’s metadata,
as seen in the example below.

You are in the lobby (region 8). Walk past the
dining table and head up the stairs (region 10). Stop
at the top of the stairs. You arrived at hallway (region 7).

This approach ensures that while the model needs to
deduce some regions along the path, keeping the task chal-
lenging, it at least has clear starting and ending points, and
can easily identify different regions based on their ID.

2) Sequence Generator: Our solution utilizes navigation
instructions used daily by individuals, and thus can be crowd-
sourced or built in-house. The nature of such instructions
is that they describe a path starting and ending in different
regions. These paths do not usually cover all the regions
in the space, and different paths have a lot of overlapping
covered regions. The goal of our Sequence Generator is to
group the instructions so that the combination of regions
covered by all the instructions in a sequence covers the whole
building. At the same time, the number of instructions in a
sequence is small to minimize the required manual effort.

Given a set of navigation instructions Z, where each covers
known starting and ending regions, and intermediate regions
deduced by the Instruction Refiner, the Sequence Generator
separates these instructions into groups based on the regions
they cover. This process generates subsets of Z, with each
subset corresponding to a region, ensuring that every in-
struction within a subset incorporates that region in its path.
Let the building comprise ! regions with % total navigation



Algorithm 1 Sequence Generation Algorithm

: Input: A set of navigation instructions Z, total regions /
: Output: An iterator over distinct sequences S
: function GROUPBYREGION(Z)
R« {}
for each i € 7 do
for each r € i.regions do
R[r] < R[r] U {:}
return R
: end function
: function GENERATECOMBINATIONS(R, 1)
define gen(r = 1, path = []):
if » > [ then
yield path
else
for each i € R[r] do
yield from gen(r + 1, path + [i])
return gen()
: end function
: R < GROUPBYREGION(Z)
. § <+ GENERATECOMBINATIONS(R, ()
: iterate over S
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instructions. The average number of instructions per region
is calculated as m = % When constructing sequences, an
instruction is selected from each region’s subset. Therefore,
the sequence length of a building is < [, where [ represents
the total number of regions in the building. Applying the
fundamental principle of counting, the approximate total
number of distinct sequences for a building is estimated as
m!, considering [ regions and m instructions per region.

This methodology limits the length of a navigation se-
quence to the number of regions in a building while ensur-
ing full coverage of the space. Notice that the number of
generated sequences is exponential in the number of regions
of the building, which means that using a small number of
instructions, we can generate a lot of different sequences that
describe the indoor space. To avoid exponential run-time, we
use lazy evaluation of sequences, generating them as needed
rather than all at once, as seen in Algorithm 1.

3) Prompter: The role of the Prompter is to combine the
generated sequences and the buildings’ meta-data into one
prompt using a template and different strategies to prompt the
LLM. We use the following template to pass the information
mentioned in section III-A:

Act as a computer scientist cartographer and create a map
representation of an indoor building. I will provide you
with 3 things. First, the expected output format. Second,
information about the room-like regions of the building. We
might have regions that have the same name/label. Third,
instructions for an agent to navigate the building. The
navigation instructions are independent of each other and
they are not ordered. Also, please only focus on the room-like
regions of the building, and do not include any information
about the objects in it.

OUTPUT FORMAT:
Return only a JSON object. The JSON contains one
key named connectivity_graph and its value is a Python
dictionary. The dictionary contains a key for each region,

and the value for each key is a list of indices of regions
connected to it.

ROOM-LIKE REGIONS INFORMATION:

" NAVIGATION INSTRUCTIONS:

Following the formation of the prompt, the prompter
utilizes Few-shot learning as a prompting technique. Few-
shot learning is a prompting technique where we provide
a pre-trained model with examples of the task we want to
execute to help the model learn to produce good results [24].
We define shots by examples of different buildings other than
the one being tested. Toward this goal, the Prompter utilizes
Zero-shot, One-shot, and Few-shot strategies to get the best
results from the LLM.

D. Graph Generator

The Graph Generator contains an off-the-shelf LLM that
processes the prompts generated by the Prompting Engine to
generate text that contains the Connectivity Matrix represent-
ing the map of the indoor place. Then, a Graph Extractor
parses the LLM’s output to extract the Connectivity Matrix.

1) Pre-trained LLM: LLMs like OpenAl’s GPT series
have significantly advanced the field of natural language
processing. These models, now easily accessible via cloud
services and APIs, offer robust capabilities in text generation,
comprehension, and more [25]. Their widespread availabil-
ity has made cutting-edge Al accessible to all, enabling
researchers and developers to integrate advanced language
understanding into applications effortlessly. Our solution
capitalizes on such advancement and utilizes an LLM as one
of its main components. The LLM would take the prompts
given to it by the Prompting Engine and deduces the different
connections between the room-like regions of the space.

2) Graph Extractor: The LLM outputs a text output that
contains the connectivity matrix of the described space. The
Graph Extractor takes this output and parses it to extract the
output graph representation.

IV. EVALUATION FRAMEWORK

In this section, we detail the creation of the Text2Map
dataset, the first of its kind for the task described in
Section III-A, which we employ for evaluation. We dis-
cuss the selected LLMs for our analysis, emphasizing their
alignment with our project’s aim to minimize reliance on
inaccessible tools. Furthermore, we outline the evaluation
metrics—BP2-Graph Edit Distance (BP2-GED) and Edge
Similarity—explaining their selection rationale. Together,
these elements constitute our experimental framework for the
evaluation process.

A. Creating The Text2Map Dataset

Creating navigable map representations of indoor spaces
from natural language navigation instructions using language
models is an uncharted area with no existing data sets for
model evaluation or training. To overcome this dataset short-
fall, we created the first dataset specifically tailored for this
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Fig. 2: Hierarchical structure of (a) Matterport3D buildings and (b)
R2R Navigation Instructions.

task. For this purpose, we utilized the Room-to-Room (R2R)
and Matterport3D datasets, which provide a solid foundation
to build our dataset, Text2Map. The R2R dataset, crucial for
Vision-Language-Navigation (VLN) tasks, integrates spoken
instructions for navigating from start to destination within the
Matterport3D dataset’s environments, spanning 90 diverse
buildings and featuring more than 10,000 panoramic views
from 194,400 RGB-D images, including houses, apartments,
hotels, offices, and churches. Matterport3D’s data contain
connectivity graphs and object information, enabling agents
to navigate through its simulator and experience varied
viewpoints. The R2R dataset itself includes 21,567 crowd-
sourced open-vocabulary navigation instructions, averaging
29 words and detailing paths often crossing multiple room-
like regions and over 10 meters in length [26], [27].

1) Building Text2Map Inputs: As shared earlier, our in-
puts are navigation instructions and metadata per building.
To build our inputs, we first group the R2R instructions
based on their building ID. Next, we group the instructions
in each building by the regions they cover. Fig. 2 shows the
hierarchical structure of the data in R2R and Matterport3D
and how they can be mapped to each other. This way we
can clearly know what regions each instruction covers, and
consequently, produce a lot of navigation sequences that can
describe each building. Additionally, Matterport3D provides
us with metadata files for each building, which we parse to
format the metadata in our desired formats.

2) Building Text2Map Outputs: Matterport3D provides us
with connectivity graphs between viewpoints within each
building. We group these viewpoints based on the region
they belong to. Based on the external connections between
the viewpoints of each region and the viewpoints that belong
to other regions, we build connectivity graphs that describe
the connectivity between room-like regions of each building.

However, while these graphs cover all regions in the
building, R2R navigation instructions do not necessarily
cover the whole building, as seen in Fig. 3, in fact, on average
only 87% of each building is fully covered. To solve this
issue, we remove the regions that are not covered by the
navigation instructions. This way we guarantee that we will
not have any regions in the ground-truth connectivity graphs
that are not covered by the navigation instructions.

3) Building the Text2Map-Test Dataset: Our dataset en-
compasses 22,000 navigation instructions across 90 build-
ings, highlighting the potential to generate an exponential
number of unique sequences to describe each structure com-
prehensively. For our experiments, we strategically generate
and utilize only 5 distinct sequences for each building. These
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sequences serve as the foundation for conducting various
experiments, allowing us to explore the efficacy of different
components and prompting techniques within our pipeline.

B. Chosen LLMs

For our experiments, we utilize OpenAI’s GPT-4 and GPT-
3.5 LLMs [28], [29]. Besides their powerful capabilities,
another reason for choosing OpenAI’s GPT models is their
accessibility. Both GPT-3.5 and GPT-4 are available through
OpenATI’'s API, which offers an easy and user-friendly way
for developers and researchers to access these powerful
language processing tools. This accessibility greatly benefits
our research, as it permits us to utilize their advanced
features without necessitating considerable computational
power for running and training on our side. Consequently, we
circumvent the use of inaccessible specialized tools, aligning
with our research objectives. [29].

C. Evaluation Metrics

Text2Map creates a graph-based connectivity matrix. To
assess its performance, we require metrics that measure its
proficiency in grasping the structure of the space, focusing
on structural similarity. Additionally, we need to measure
Text2Map’s ability to avoid falsely introducing non-existent
edges. This section outlines the evaluation metrics chosen
and explains the rationale for their selection.

1) Approximated Graph Edit Distance (BP2-GED): For
our task, we utilize the graph edit distance (GED) metric
to measure graph similarity. GED is widely used in pattern
recognition, bioinformatics, and network analysis to compare
graph-structured data [30]. We define the GED between two
graphs G1 = (V1, Ey) and Gy = (Va, E») as the minimum
cost of edit operations required to transform G; into Ga,
where V' denotes vertices and E' denotes edges:

GED(G1,G2) = min {Zcost(e) : € transforms G into G2

eef
ey
The sequence of edit operations £ includes vertex and edge
insertions, deletions, and substitutions. The cost associated
with them e is defined as cost(e) = 1 for all edit operations.



However, the problem of optimizing GED is known to be
NP-complete. This means that the run-time for minimizing
the edit costs may be huge even for rather small graphs.
Consequently, rather than calculating the GED, we adopt the
approximation technique developed by Fischer et al. [31],
referred to as BP2. BP2 represents an innovative quadratic
time approach that merges the Hausdorff Edit Distance
(HED) [32] and the Greedy Edit Distance (BP-Greedy) [33]
to estimate an upper limit of the GED. This method achieves
an approximation error that ranges from 0. 4% to 10. 8%.
Therefore, we use BP2 as an evaluation metric where:

BP2-GED(G1, G3) > GED(G1, Gs) )

2) Total Edge Similarity: We consider the Edge Similarity
metric to evaluate the model’s performance in correctly
predicting graph connections, which helps in assessing the
model’s ability to avoid false positives and false negatives.
Edge Similarity is mathematically defined as:

|TP|+ |TN|

EdgeSim(G4,Gg) = |TP|+ |FP|+ |TN|+ |FN| ®

where:
- TP (True Positives): Edges present in both G4 and G,
- TN (True Negatives): Edges absent in both G4 and Gp,
- FP (False Positives): Edges present in G but absent in G 4,
- F'N (False Negatives): Edges present in G 4 but absent in G p.
This metric encapsulates the accuracy of the model in edge
prediction, illustrating its proficiency in identifying correct
connections while avoiding incorrect ones.

V. EXPERIMENTS AND RESULTS

We initiate with an ablation study to demonstrate the
significance of each Text2Map component. Subsequently, we
analyze Text2Map’s overall performance relative to vary-
ing shot numbers and building sizes. Lastly, we compare
Text2Map’s performance against the required human manual
effort. Overall, our results indicate that Text2Map secures a
BP2-GED ranging from 0.5X to 2X the total number of re-
gions in buildings containing up to 72 regions. Furthermore,
it achieves an Edge Similarity score between 0.87 and 0.9,
underscoring the effectiveness of our methodology.

A. Ablation Study: Evaluating Component Contributions

Metadata Prompt Instructions ~ Structured =~ BP2-GED Edge
Template  Refinements  Sequences Similarity
X X X v 60 0.47
X v v v 45 0.81
v X v v 42 0.82
v v X v 37 0.85
v v v X 73 0.78
v v v v 35 0.87

TABLE I: Results of Ablation Study on 90 Matterport3D buildings
with GPT-4 under Zero-shot learning

We conduct an ablation study to evaluate the contribution
of each component of our solution to its overall effectiveness,
employing the 7Text2Map-Test dataset (section IV-A.3) and
GPT-4 under Zero-shot learning. In this process, we average
the metrics across all 90 buildings to understand the broader

impact. We start by introducing the baselines that we ex-
amine, explaining the reasoning behind each choice. Then
we present the findings of the ablation study. The following
outline the baselines utilized in our experiments:

1) Only Structured Navigation Sequences.

2) Text2Map without Building’s Metadata.

3) Text2Map without Prompting Template.

4) Text2Map without Instructions Refinements.

5) Text2Map without Structured Navigation Sequences.

Each baseline in our ablation study plays a crucial role
in dissecting the functionality and contribution of distinct
elements within Text2Map. We start with the most basic
solution, which is just making sure that the navigation
sequences are structured in a way that ensures full coverage
of the whole space. Removing the Building’s Metadata
assesses the importance of contextual information about each
building’s specific characteristics and how they influence the
model’s comprehension in identifying correct regions. The
absence of the Prompting Template allows us to evaluate
the effectiveness of structured prompts in guiding the model
towards more accurate output. We test this effectiveness
by replacing the template with the following basic prompt
”Create a connectivity matrix from the following navigation
instructions”. By excluding Instructions Refinements, we
test the sufficiency of the raw navigation instructions and
identify the value added through our refinement process.
Lastly, operating without Structured Navigation Sequences
provides insights into the significance of having instructions
that are guaranteed to fully cover the indoor space. We do this
by testing against randomly generated sequences of length [,
where [ is the number of regions in the building.

The results of our ablation study, presented in Table I,
offer a clear evaluation of the significance of each ele-
ment within Text2Map. The study highlights performance
degradation when any component is omitted. The removal
of Structured Sequences notably incurs the most substan-
tial performance decline, emphasizing their importance in
ensuring comprehensive map coverage. The elimination of
Metadata and Prompt Template also negatively affects per-
formance, pointing to their role in improving the quality of
the information processed by the LLM. The least affected
by component removal is Instructions Refinements, suggest-
ing potential areas for optimization, which we explore in
subsequent sections. Overall, when comparing the simplest
solution that guarantees complete map coverage (baseline 1)
to our comprehensive Text2Map solution, it is evident that
Text2Map significantly enhances performance, doubling both
Edge-similarity and GED.

B. Impact of the Number of Few-Shot Learning Shots

Our Prompting Engine includes a Prompter component
responsible for crafting prompts for the Graph Generator. We
employed Few-Shot learning to enhance the LLMs’ perfor-
mance. To evaluate this strategy, we conducted experiments
using Zero-Shot, One-Shot, and Five-Shot approaches. These
experiments were performed using GP7-3.5 and GPT-4 on
the Text2Map-Test dataset (section IV-A.3), encompassing



Shots Count  Regions Count  Buildings Count BP2-GED EdgeSim

Shots Count  Regions Count  Buildings Count BP2-GED EdgeSim

1-10 17 7 0.66 1-10 17 6 0.77

10-20 26 27 0.84 10-20 26 25 0.86

Zero-shot 20-30 30 44 0.90 Zero-shot 20-30 30 39 0.90
30-72 17 77 0.93 30-72 17 73 0.94

1-72 90 39 0.84 1-72 90 35 0.87

1-10 17 7 0.73 1-10 17 6 0.83

10-20 26 27 0.83 10-20 26 24 0.85

One-shots 20-30 30 39 0.89 One-shot 20-30 30 38 0.90
30-72 17 76 0.93 30-72 17 68 0.92

1-72 90 37 0.85 1-72 90 34 0.88

1-10 17 5 0.74 1-10 17 3 0.88

10-20 26 22 0.85 10-20 26 18 0.85

Five-shot 20-30 30 40 0.88 Five-shot 20-30 30 34 0.90
30-72 17 75 0.93 30-72 17 66 0.94

1-72 90 36 0.86 1-72 90 29 0.90

TABLE II: Results of running our experiments on GPT-3.5
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Fig. 5: Figures (a) and (b) illustrate the impact on BP2-GED and
Edge Similarity with increasing shot numbers, respectively.

various building sizes. Details of the results are presented
in tables II and III, while Fig. 5 displays the variation in the
average values of our two metrics across the entire dataset,
plotted against the changing number of shots.

Tables II and III reveal that Text2Map with GPT-3.5
achieves 39 BP2-GED and 0.84 Edge Similarity at Zero-
shot, improving to 36 and 0.86 at Five-shot. With GPT-4, the
metrics improve from 35 BP2-GED and 0.87 Edge Similarity
at Zero-shot to 29 and 0.90 at Five-shot. Consequently, Fig.
5 shows a positive correlation between similarity scores and
the number of shots, and a negative correlation between BP2-
GED and the number of shots, reflecting the improvement
as the model is exposed to more examples.

C. Impact of Building Size

Text2Map is significantly influenced by increasing build-
ing sizes, where the size is measured by the number of
regions within a building. As detailed in section IV-A.3, the
Text2Map-Test dataset includes a range of building types,
such as houses, hotels, offices, and churches, with region
counts from 1 to 72, providing a good view of Text2Map’s
performance across varying building sizes.

Tables II and III illustrate the performance of Text2Map
with different building sizes. Fig. 6, shows that as the number
of regions within a building increases, BP2-GED relative to
the number of regions increases, going from 0.5X to 2X,
reflecting increased structural complexity. Interestingly, Edge
Similarity exhibits an upward trend with increasing building
regions. This occurs because the increase in regions expands

TABLE III: Results of running our experiments on GPT-4
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Fig. 6: Figures (a) and (b) depict how %ﬁe}gh}m and Edge

similarity change as the number of regions within each building
increases under a five-shot learning prompting technique.

the potential edge connections, thereby elevating the chances
that the model can correctly identify or dismiss connections,
reducing false positives and negatives.

D. Manual Effort vs. Text2Map Performance

Manual effort can be captured by the GED, as it indicates
the number of needed manual operations to fix the generated
connectivity graph. The better the performance of Text2Map,
the fewer manual operations are needed after generating the
graph. As of now, the number of manual operations is 0.5X
the number of regions in smaller buildings and it grows to
2X as the number of regions in a building increases, as seen
in Fig. 6. These results show a reasonable amount of added
manual work compared to the building’s size.

Another key aspect that we need to weigh is the manual
effort required to obtain navigation instructions. Generating
these instructions is a familiar task, akin to giving someone
directions, which is straightforward in daily life. However,
as the demand for a greater volume of instructions increases,
so does the manual effort involved. As detailed in Section
III-C.2, our current strategy involves selecting one navigation
instruction per region. Therefore, in a building comprising [
regions, we end up with [ instructions, with an average path
length of 10 meters. This method ensures that each area
is included at least once, even though it may not provide
the most efficient set of instructions that cover the entire
building, as some instructions may overlap in the same
area. Our ongoing research is focused on identifying those



instructions that cover multiple regions along their paths and
using them to drop unneeded instructions.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented an alternative method to
solve the problem of creating digital navigable map rep-
resentations for indoor spaces. We proposed using human
language navigation instructions which eliminates the need
for expertise in map data formats and specialized hardware,
so now anyone can do such descriptions. To convert these
language-based descriptions to navigable format we utilized
LLMs to automatically generate a graph representation of the
map where room-like regions are nodes, and edges indicate
connections between these regions. With this approach in
mind, we defined our task and described the methodology
of creating the first dataset for this goal Text2Map Dataset.
Following that we ran our experiments on OpenAl’s GPT-
3.5 and GPT-4 and utilized few-shot learning as a method
of prompting. We reported our results, which showed that
Text2Map achieves a GED of 0.5X the total number of
regions in buildings and an Edge Similarity score of up to
0.9, which showed the great potential our method holds. For
future work, we plan to refine the use of verbal navigation
instructions for graph construction by developing methods
to assess and enhance instruction quality, possibly using a
language model to synthesize a coherent building description
from multiple sequences.
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