Check for
updates

R DIGITAL Assaciaionfoe
acvyel® 155 Ry T @m open)
¢ Latest updates: https://dl.acm.org/doi/10.1145/3748636.3762771

RESEARCH-ARTICLE
Tesseract: Unfolding Navigable Graph Representations from Low-
Semantic Floor Plans

YAQOOB ANSARI, Carnegie Mellon University, Pittsburgh, PA, United States
AMMAR KARKOUR, Carnegie Mellon University, Pittsburgh, PA, United States
EDUARDO FEO FLUSHING, Carnegie Mellon University, Pittsburgh, PA, United States
KHALED A HARRAS, Carnegie Mellon University, Pittsburgh, PA, United States

Open Access Support provided by:

Carnegie Mellon University

I PDF Download
};3 3748636.3762771.pdf
< 20 January 2026
Total Citations: 0
Total Downloads: 160

Published: 03 November 2025
Citation in BibTeX format

SIGSPATIAL '25: 33rd ACM International
Conference on Advances in Geographic
Information Systems

November 3 - 6, 2025

MN, Minneapolis, USA

Conference Sponsors:
SIGSPATIAL

SIGSPATIAL '25: Proceedings of the 33rd ACM International Conference on Advances in Geographic Information Systems (November 2025)

https://doi.org/10.1145/3748636.3762771
ISBN: 9798400720864


https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3748636.3762771
https://dl.acm.org/doi/10.1145/3748636.3762771
https://dl.acm.org/doi/10.1145/contrib-99661777968
https://dl.acm.org/doi/10.1145/institution-60027950
https://dl.acm.org/doi/10.1145/contrib-99661779596
https://dl.acm.org/doi/10.1145/institution-60027950
https://dl.acm.org/doi/10.1145/contrib-81556540956
https://dl.acm.org/doi/10.1145/institution-60027950
https://dl.acm.org/doi/10.1145/contrib-81314489712
https://dl.acm.org/doi/10.1145/institution-60027950
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60027950
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3748636.3762771&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/gis
https://dl.acm.org/conference/gis
https://dl.acm.org/conference/gis
https://dl.acm.org/sig/sigspatial
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3748636.3762771&domain=pdf&date_stamp=2025-12-12

Tesseract: Unfolding Navigable Graph Representations from
Low-Semantic Floor Plans

Yaqoob Ansari Ammar Karkour
Carnegie Mellon University =~ Carnegie Mellon University
Pittsburgh, USA Pittsburgh, USA
yansari@andrew.cmu.edu  akarkour@andrew.cmu.edu

Abstract

Indoor maps are essential for navigation, resource allocation, and
autonomous operation in complex environments, yet creating them
at scale has long been impeded by high costs and specialized hard-
ware requirements. We present Tesseract, a modular system that
transforms ordinary low-semantic floor plan images into naviga-
ble graph structures, without requiring specialized sensors or 3D
modeling tools. Through Tesseract, we integrate deep learning mod-
ules for text detection and door classification. We then implement
a novel floodfill-based segmentation and graph optimization so-
lution. Tesseract ultimately generates semantically rich, compact
graph representations of the original floor plans that are computa-
tionally parsable for indoor navigation applications. We evaluate
Tesseract across two large-scale university buildings as well as a
benchmark dataset, demonstrating high navigational completeness
despite variations in layout complexity. The system processes floor
plans efficiently, with runtime scaling linearly to the number of de-
tected regions, thus remaining practical for large-scale deployments.
Graph pruning reduces the initially dense connectivity—typically
quadratic in the number of regions—to a sparse structure, yield-
ing up to 78% fewer nodes and 70% fewer edges, all without com-
promising connectivity. Moreover, geometric fidelity is preserved
within 80-86% of true real-world distances. These findings establish
Tesseract as a robust and scalable solution, broadening access to
automated indoor navigation and spatial analytics.
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1 Introduction

Understanding and utilizing indoor spaces effectively requires more
than visual representations. It demands structured, machine-readable
models that can support reasoning, navigation, and autonomous op-
eration [27, 30]. While outdoor environments have benefited from
advances in satellite imagery and large-scale geospatial annota-
tion [7, 40], comparable progress in indoor environments has been
limited. Indoor spatial data remains fragmented, and its extraction
often depends on manual modeling or specialized equipment. Nev-
ertheless, high-quality indoor models are essential across a range
of domains, including autonomous systems [13], robotics [44], aug-
mented reality [38], intelligent building management [48], and
indoor localization [17, 29]. These applications require spatial rep-
resentations that are not only geometrically accurate but also se-
mantically structured to enable reliable navigation [16, 19] task
execution [21], and system integration [14, 39].

Such models can support efficient path planning for humans and
mobile agents [9, 28, 37], improve the performance of indoor local-
ization systems [18, 29], and facilitate more intuitive interactions
within human-centered spaces. However, detailed geometry alone
is insufficient. Many real-world applications require knowledge of
spatial connectivity, functional labeling, and traversability. These
properties are best captured through structured graph-based mod-
els, which abstract spatial layouts into discrete regions connected
by defined transitions. To fully realize the potential of indoor spatial
systems, there is a need to move beyond conventional map genera-
tion and toward the creation of computationally parsable navigable
graphs. These graphs provide a compact and interpretable founda-
tion for machine reasoning, encoding semantic regions, adjacency
relations, and accessibility constraints in a form that is suitable for
large-scale automation and decision-making.

In this paper, to address these challenges, we propose Tesseract,
a novel system that generates navigable indoor graphs directly
from low-semantic images. Tesseract leverages deep learning for
text detection, semantic inference, and door identification with
our novel floodfill-based segmentation algorithm and graph con-
struction techniques. Our floodfill-based methodology employs a
radial-based seeding strategy, initiating multiple floodfill opera-
tions from detected text labels used as space or room identifiers. As
such, we precisely delineate distinct indoor regions and robustly
overcome ambiguities posed by text boundaries or room artifacts
in noisy, low-semantic floor plan imagery. The resulting output is
a structured graph representation that encodes both the geometric
layout and semantic content of indoor environments. Our modular
architecture enables targeted deployment of machine learning mod-
els on well-bounded subtasks, allowing for straightforward model
updates and compatibility with advances in computer vision. This
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design ensures that the system remains both flexible and adaptable
while retaining interpretability and control over each stage of the
pipeline.

We build Tesseract to be a truly deployable system that addresses
concerns of privacy, practicality, and scale. It safeguards privacy
by processing offline, pre-existing floor plans without relying on
sensitive user or real-time data. This makes it well-suited for deploy-
ment in secure institutional environments where data protection is
paramount. Tesseract only uses basic, low-semantic floor plan im-
ages, commonly found in fire evacuation guides, information kiosks
in malls and airports, or architectural records. Although modern
CAD formats (e.g., DXF, DWF) offer detailed vector representations,
with tools that can extract structured primitives from them, such
files are often unavailable, or may include sensitive architectural
metadata or proprietary design layers, making them unsuitable
for broad distribution due to privacy and ownership concerns; in
contrast, floor plan images are more abundant, publicly accessible,
and easier to process at scale. Finally, Tesseract avoids specialized
hardware or complicated workflows, enabling rapid navigable in-
door graph generation even for non-expert users. By addressing
the cost, complexity, and privacy barriers that have traditionally
hindered large-scale indoor modeling, Tesseract offers a practical
and scalable approach for producing structured, machine-usable
spatial representations from widely available visual inputs.

We comprehensively evaluate Tesseract across two large-scale
university buildings as well with the SESYD [11] benchmark. Our
evaluation spans four key dimensions: navigational completeness,
exit reachability, computational efficiency, and geometric fidelity.
Our results show that Tesseract consistently produces highly con-
nected graphs, with average navigational completeness scores higher
than 90%, and reaching 98%. Exit reachability remains above 85%
across all datasets. In terms of efficiency, the system maintains
a total runtime of under two minutes per image patch, even on
large and densely annotated floor plans. Our efficient solution, via
structural pruning, achieves significant compression—up to 78%
reduction in nodes and 74% in edges—without compromising con-
nectivity. Moreover, geometric fidelity remains high, with over
90% alignment between graph-based and true Euclidean distances
across room pairs. These results highlight Tesseract’s robustness,
scalability, and suitability for generating compact, semantically rich
indoor graphs from low-semantic inputs.

2 Related Work

This section examines the progression of indoor modeling, from
robotics-driven approaches to data-centric techniques that mini-
mize reliance on specialized hardware. We also review methods
that utilize CAD drawings as input. Unlike prior approaches, our
pipeline processes static floor plan images to generate structured,
navigable indoor graphs—sidestepping the need for specialized sen-
sors or CAD/BIM models while supporting scalable deployment.
In mobile robotics, robots rely heavily on their capacity to both
perceive and map the environment [], a task accomplished through
Simultaneous Localization And Mapping (SLAM) [12]. SLAM en-
ables robots to construct spatial maps, integrate sensory data, and
localize themselves for various tasks. However, these spatial maps
are primarily geometric, lacking the semantic richness needed for
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effective interaction in human-oriented spaces; they typically omit
information such as room names, office numbers, space types (e.g.,
lab, lounge, restroom), or the functional purpose of a region—details
that are crucial for applications like context-aware navigation, emer-
gency response, or space utilization analysis [1, 46]. This limita-
tion has prompted the development of semantic indoor mapping
techniques, which incorporate meaningful information into the
mapping process. Some approaches involve human collaboration,
such as engaging in conversations to enrich maps with semantic
data [4], while others utilize machine learning to improve scene
comprehension and region identification. Such solutions include
the creation of hierarchical 3D scene graphs that define spatial
relationships between rooms [20], vision-to-language models that
describe scenes [6], and region classifiers that label sensor data
from RGB-D inputs [41]. Although these advances in robotic map-
ping are promising, their reliance on complex hardware remains
a significant barrier to broader adoption, limiting their practical
use outside specialized environments [5, 22, 42]. Contrary to these
methods, our approach removes dependence on robotics platforms
and high-end sensors by leveraging widely available data sources.

To bypass the reliance on specialized sensors or robotic platforms,
some approaches leverage pre-existing symbolic or textual data
about buildings. These data-driven semantic methods focus on using
structured sources such as CityGML, indoorGML [36], and Apple’s
IMDF. These formats are rich in semantic and topological details
but require significant manual labor and in-depth expertise [25].
In response, recent developments suggest the use of natural lan-
guage descriptions of building features, paired with advanced deep
learning models such as Stanford Scene Graph Parser [8] or Gener-
ative Adversarial Networks (GANs) [33], to produce graph-based
indoor maps. This approach minimizes dependence on intricate
data formats but still demands a comprehensive understanding of
the building’s layout and function, making it challenging to crowd-
source or delegate to general users. Additionally, these models
require extensive datasets of indoor environments for training, a
task complicated by privacy concerns and the inherent sensitivity
of indoor space data.

Separately, a growing body of work focuses on extracting spa-
tial representations directly from visual documents such as CAD
drawings or 2D floor plan images. CAD files typically contain pre-
cise geometric attributes, enabling the reconstruction of robust
3D models that facilitate navigation and analytical tasks [31, 32].
Effective use of CAD data often necessitates specialized expertise,
comprehensive preprocessing, and compliance with standardized
formats—factors that can hinder large-scale deployment. As an alter-
native, recent approaches have focused on automatically deriving
indoor spatial information directly from 2D floor plan images. For
instance, walls, doors, and other structural elements can be automat-
ically identified using deep learning techniques for segmentation
and object detection to generate semantically rich indoor maps
[23, 43, 47]. While these methods eliminate the need for sophisti-
cated hardware and reduce complexity, they rely on comprehensive
training datasets and careful tuning to handle floor plan style and
content variations. Ongoing efforts aim to enhance the robustness
of these workflows, ensuring reliable indoor mapping from diverse
data sources, further lowering the barriers to adoption.
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With the rapid evolution of Vision-Language Models (VLMs), it is
natural to ask whether general-purpose multimodal systems—such
as GPT-4V or Gemini—can perform end-to-end floor plan under-
standing by directly generating a structured graph from an input
image. While VLMs have shown promising results on small or syn-
thetic floor plans, their performance deteriorates on complex or
large-scale layouts due to limitations in spatial precision, global con-
sistency, and fine-grained localization[10, 24]. These models often
miss small but critical features (e.g., narrow doorways) or generate
inconsistent topologies that break navigational connectivity[45].
Moreover, they currently offer no guarantees of semantic alignment,
graph completeness, or reproducibility—attributes that are essential
for navigation and safety-critical applications[35]. Beyond perfor-
mance, reliance on proprietary cloud-based APIs raises privacy
concerns and complicates deployment at scale [15, 26]. In contrast,
Tesseract is designed specifically for this task: it operates offline,
supports large architectural inputs, and produces structured, high-
fidelity graphs optimized for semantic accuracy and graph-theoretic
integrity. While VLMs may eventually complement these systems,
current limitations underscore the continued need for task-specific,
transparent, and controllable systems like Tesseract.

3 Tesseract: A Modular Architecture

3.1 Architectural Overview

The proposed Tesseract is a modular framework designed to con-
vert annotated floor plan images into graph-based indoor graphs
suitable for downstream tasks such as navigation, spatial analytics,
and simulation. The system prioritizes robustness and scalability by
decomposing the mapping process into distinct processing stages,
each of which can be refined or replaced independently (see Figure
1 for a schematic overview). This modular design ensures that im-
provements in one stage (e.g., text recognition) naturally propagate
throughout the entire system without necessitating major revisions
in the other components.

At a high level, Tesseract begins by extracting textual labels (e.g.,
room numbers, corridor identifiers) using a deep-learning-based
text detection module. These detected labels are then refined and
merged to eliminate duplication or splitting errors. Next, the system
employs a floodfill-based spatial segmentation approach to delin-
eate each labeled region (rooms, corridors, and outdoor spaces) in
the image. From these segmented regions, an initial set of nodes
is generated, capturing essential spatial entities (e.g., individual
rooms). Additional nodes corresponding to corridor and outdoor
areas are then introduced systematically to ensure a high-resolution
coverage of navigable spaces.

Once the major structural regions have been established, a spe-
cialized door detection model identifies and classifies doors, which
serve as critical connectors between rooms, corridors, and outdoor
areas. The detected door locations are then used to anchor connec-
tivity relationships by linking adjacent spatial regions, enabling the
construction of an initial graph representation over the segmented
floor plan. This preliminary graph captures the topological layout
of the environment, including key transitions between enclosed and
navigable spaces. To improve efficiency and usability, the graph is
subsequently refined through shortest-path analysis and structural
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pruning, retaining only the minimal set of nodes and edges required
to preserve full navigational connectivity.

3.1.1  Assumptions and Constraints. To ensure consistent and re-
liable performance, the Tesseract operates under a set of assump-
tions regarding the input floor plans. Annotations must be clear
and explicit, with rooms, corridors, and outdoor areas distinctly
labeled. Unlabeled or ambiguous regions are excluded or flagged
for manual review. Room identifiers (e.g., “101”, “102A”) must be
unique within each floor plan to prevent ambiguity during text
extraction and graph generation. A room is defined as a bounded
polygonal region enclosed by walls and containing at least one
identifiable door. Open-concept areas without defined boundaries
are excluded for consistency. Floor plans should represent only core
structural elements such as walls, doors, and spatial boundaries,
while omitting interior details like furniture, icons, or elevation
markers. This assumption simplifies structural parsing and reduces
false detections. Although not all floor plans strictly conform to
these conditions, many sources such as evacuation maps, blueprints,
and real estate diagrams are sufficiently aligned. These constraints
ensure that each component of the system, from text recognition
to graph construction, functions under well-defined and consistent
conditions.

3.2 Floor Plan Patching and Preprocessing

The first stage of the Tesseract involves preprocessing large-scale
floor plan images using the Floor Plan Patcher module. Raw floor
plans—particularly those corresponding to multi-wing buildings
or campus-scale facilities—often exceed 5000x5000 pixels in reso-
lution, making direct processing computationally expensive and
error-prone for vision-based models. Moreover, the fixed input size
constraints of deep learning modules (e.g., CRAFT and Faster R-
CNN) necessitate consistent image dimensions to maintain spatial
context and recognition fidelity.

Therefore, each high-resolution input image is automatically par-
titioned into a grid of non-overlapping 1024x1024 pixels patches.
This patching strategy ensures uniformity during model inference,
improves GPU memory efficiency, and localizes the detection scope
to regions with a manageable visual footprint. Additionally, it min-
imizes the likelihood of detection failures due to scale variation or
contextual dilution—issues that frequently arise when processing
very large spatial canvases in a single pass.

Each patch is processed independently through the downstream
stages of the system (text detection, segmentation, door detection,
etc.), and results are later reassembled into a unified graph represen-
tation. This modular decomposition preserves the spatial integrity
of the original layout while enabling scalable, parallelized process-
ing across varied architectural forms.

3.3 Text Detection and Spatial Segmentation

After patching high-resolution floor plans into standardized image
segments, Tesseract focuses on two critical tasks: text detection
and floodfill-based spatial segmentation. By accurately identifying
textual labels (e.g., room identifiers) and delineating corresponding
spatial regions, this step establishes the fundamental building blocks
for graph construction and subsequent navigation.
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Figure 1: Overview of the Tesseract, highlighting key modules: floor plan patching, text detection, door detection and classifica-
tion, spatial segmentation, graph construction, and pruning to generate a final pruned graph representation.
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=1 F= F‘% =1 = tified, the system employs a seed-based floodfilling algorithm to
i\ o e e = ﬁ ﬁw segment the floor plan image into coherent, labeled regions. Each
™ g\ — il - bounding box center acts as a primary seed, supplemented by ad-
= o _ : e ditional seed points distributed radially (with radius r = 20 px and

Multiple Text Merged . . . .
Snilin Gaes Room angular step size A@ = 5px ). This radial seeding strategy helps
Post Text Node overcome issues where the bounding box center might fall on the
Inference interior of a text label (e.g., inside the “loop” of a digit), preventing

a proper floodfill initiation.

Figure 2: Post-processing of text detection: multiple bound- Floodfilling progresses outward from each seed until encoun-
ing boxes resulting from fragmented text inference (left) are tering black pixels that denote walls or other impassable barriers.
merged based on spatial proximity (center), yielding a uni- This ensures that the resulting segmented areas remain true to the
fied room node seed (right). architectural boundaries. Once the floodfill completes, all pixels

attributed to a particular seed are linked to the node corresponding
to that label (e.g., a room node). Figure 3 illustrates the outcome of
these segmentation steps in a representative floor plan.

Following segmentation, region boundaries and sizes are ana-
lyzed for consistency. Unassigned pixels, if any, are flagged for
further review, ensuring comprehensive coverage across the image.

Text Detection. We begin by applying the pre-trained CRAFT
(Character Region Awareness for Text Detection) MLT-25K [3]
model to localize textual elements within the floor plan. Specifically,
three main categories of labels are extracted:

(1) Room identifiers (e.g., “1001”, “102A”), These refined labels and segmented regions thus form a founda-
(2) Corridor or hallway labels, and tional layer for the subsequent graph-building process. In the next
(3) Ancillary annotations such as exits or directional markers. section, we discuss how these segmentation outputs are integrated

with corridor and outdoor node placements, enabling a richer rep-
resentation of the navigable spaces within the floor plan.

Algorithm 1 summarizes the text detection and seeded floodfill-
ing procedure.

After generating bounding boxes for each detected text instance, a
distance-based merging algorithm unifies fragmented boxes. For
instance, if CRAFT partially segments a room number into two
bounding boxes (e.g., “1011” being split into “101” and “1”), the al-
gorithm identifies these bounding boxes as overlapping and merges

them into a single detection (refer to Figure 2). 3.4 Graph Initialization and Door Detection
Refined bounding boxes are passed to a VGG BiLSTM-CTC Building on the labeled and segmented regions established in Sec-
model [2], trained on a domain-specific dictionary to extract textual tion 3.3, the next stage of the Tesseract constructs an initial graph
content. Non-essential text (e.g., scale bars, markers) is discarded, representation and identifies doors that serve as critical connectors
while valid labels are retained. The center of each bounding box between spatial units. To capture the full navigable space, addi-
corresponding to a room, corridor, or outdoor label is used as a tional nodes are systematically placed within corridor and outdoor

node candidate for graph construction. regions. Detected doors are then classified and used to define edges
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Figure 3: Floodfilling process for spatial segmentation: ini-
tial seed points are distributed radially around each text
label (left), region growing is performed via seeded flood-
filling (center), and the resulting labeled regions form the
segmented floor plan (right).

between adjacent regions, enabling the construction of a coherent
and well-connected topological graph.

Populating Corridor and Outdoor Nodes. After determining room
labels and their corresponding floodfilled regions, a wall mask is
generated from the floor plan image to identify structural bound-
aries. To prevent node placements from overlapping with walls or
other impassable features, the wall mask is expanded (buffered) by
a margin §. Only pixels outside this buffered region are deemed
valid for node placement.

Within the valid area, corridor and outdoor nodes are positioned
at regular intervals according to a grid-based stepping mechanism.
Each grid cell of size s X s (with s = 20px) is sampled to yield
uniformly spaced nodes, facilitating smooth navigation in subse-
quent graph operations. By tagging each node with its region type
(corridor or outdoor), the algorithm differentiates navigable spaces
from enclosed rooms, creating a cohesive substrate for connectivity
analysis (see Figure 4).

Door Detection and Classification. Doors link rooms, corridors,
and outdoor regions, making their detection and classification essen-
tial for reliable graph construction. We employ a fine-tuned Faster
R-CNN model[34] to locate doors within the floor plan, leveraging

Algorithm 1 Text Detection and Floodfilling with Pixel Assignment

1: Input: Floor plan image I
2: Output: Segmented regions with labeled pixels
3: procedure TEXTDETECTION(I)
Detect bounding boxes 8 = {by, b, . ..,
for all (b;,bj) € B,i # jdo

if dist(b;.center, b;.center) < € then

Merge b; and b; into one box.
end if
9: end for

10: Refine B, infer text T(b) for each b € B using VGG BiLSTM-CTC.
11: Retain b € B where T(b) € {Room, Hallway, Outdoor}.
12: Extract nodes N = {b.center | b € B}.
13: end procedure
14: procedure FLOODFILLING(N, I)
15: foralln € N do

by } using CRAFT MLT-25K.

16: Create circle C(n, r) of radius r around n.

17: Generate seeds S;, = {sg | so =n+r(cosf,sin0), 6 € [0,27), AO}.
18: foralls € S, do

19: Floodfill from s, stopping at black pixels.

20: Assign floodfilled pixels to node n.

21: end for

22: end for

23: Compute region boundaries and sizes from floodfilled areas.

24: Flag unclassified regions for further inspection.

25: end procedure
26: Return: Segmented regions with labeled pixels
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Figure 5: Post-processing of door detection: repeated bound-
ing boxes (left) are merged using a proximity threshold (cen-
ter), resulting in corrected door annotations (right).

its region proposal network to generate initial bounding boxes,
accompanied by confidence scores. A post-processing routine then
refines and merges overlapping predictions based on a defined prox-
imity threshold, ensuring that door detections align with structural
features (see Figure 5).

Each finalized bounding box is classified using the region labels
obtained from floodfilling (Section 3.3), allowing the system to
identify the door’s connectivity role within the layout. Bounding
boxes that do not yield valid spatial transitions are discarded.

Each valid door then introduces an edge between adjacent spatial
entities (e.g., room—door or corridor—door), contributing to the initial
connected graph. In the next section, we describe how these edges
and nodes are refined through graph-level optimization.

Algorithm 2 summarizes the door detection and classification
procedure.

3.5 Graph Construction and Optimization

Having assigned nodes to each region and classified the doors that
link these nodes, the next step in the Tesseract is to form a cohesive
graph representation of the floor plan. This graph serves as the
underpinning for navigable indoor maps and spatial queries, cap-
turing both localized connectivity (e.g., room-to-door) and broader
spatial relationships (e.g., corridor traversal). To maintain clarity
and computational efficiency, the graph undergoes an optimization
phase that prunes redundant edges while preserving critical paths.

Edge Creation. Edges are constructed to capture the following
essential spatial relationships:
¢ Room-to-Door Connectivity: Each room node is linked to
all doors that share its boundary, as determined by pixel-level
adjacency from the floodfilling stage.
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¢ Door-to-Hallway Connectivity: Doors connecting a room
to a corridor are used to create edges between the door node
and the relevant corridor node.

e Hallway Connectivity: Corridor nodes are interconnected
based on spatial proximity, ensuring continuous navigation
throughout the hallway network.

¢ Exit Connections: Exits are joined to outdoor nodes to fa-
cilitate direct transitions between indoor and outdoor areas.

Each edge is annotated with metadata (e.g., Room-to-Door, Corridor-
to-Corridor) to support targeted queries and pathfinding tasks.

Graph Optimization via Shortest Paths and Structural Pruning.
Although the initial graph encompasses all necessary nodes and
edges, some connections may be redundant, complicating naviga-
tion and increasing computational overhead. To address this, we
employ a hybrid optimization approach that combines shortest-path
calculations with strategic pruning:

(1) Initial Graph Construction: All regions (rooms, corridors, and
outdoor areas) are linked through their detected doors, pro-
ducing a fully connected structure.

Shortest Paths Computation: The algorithm calculates the

shortest path between every pair of rooms, retaining the

minimal set of edges and nodes that sustain connectivity.

(3) Exit Connectivity: Each room is also linked to its nearest
exit door via the shortest path, ensuring compliance with
evacuation and accessibility requirements.

(4) Pruning Non-Essential Edges: Any connection not involved
in maintaining room-to-room or room-to-exit accessibility is
removed, leaving a streamlined graph that accurately reflects
core spatial relationships.

@

~

By preserving only the paths essential for connectivity, the re-
sulting graph strikes a balance between navigational accuracy and
computational efficiency. Figure 6 illustrates an example of such a
pruned graph, showing how redundant connections are eliminated

Algorithm 2 Door Detection and Classification

1: Input: Floor plan image I, Regions R, Graph nodes N
2: Output: Updated graph G = (N, &) with classified doors
3: procedure DOORDETECTIONANDCLASSIFICATION(I, N, R)
4 Detect doors D = {d1,ds, ..., dm} using a deep learning model.
5 for all doord € D do
6: Refine d.bbox to align with I.
7 Extract pixel regions Pieft, Pright on opposite sides of d.bbox.
8: Determine region types:
typeeq = RegionType(Pleft, R), typeyigh: = RegionType (Pright, R).

9: if typejes = Outdoor A typey;ope € {Room, Corridor} then
10: Set d.type = Exit.
11: else if typej.; = Corridor A typeygp, = Corridor then
12: Set d.type = Corridor-to-Corridor.
13: else if typej.; = Room A type,jpp; = Room then
14: Set d.type = Room-to-Room.
15: else if type;.; = Room A typeigne = Corridor then
16: Set d.type = Room-to-Corridor.
17: else
18: Discard d.
19: end if

20: end for

21: Add edges (n1,ny) € Eforallvalidd € D, connecting nodes ny, ny adjacent
to d.bbox.

22: end procedure

23: Return: Updated graph G = (N, &)
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Figure 6: Graph pruning: the initial fully connected graph is
refined to remove redundant edges, yielding a streamlined,
navigable representation.

to simplify the underlying structure. The overall graph construction
and pruning procedure is summarized in Algorithm 3.

Algorithm 3 Graph Construction and Optimization

1: Input: Nodes N, Doors D, Adjacency A
2: Output: Optimized graph G = (N, &)
3: procedure GRAPHCONSTRUCTION(N, D, A)

4 Initialize edges & = 0
5: for all room r € N do
6: for all doord € D do
7: if d adjacent to r then
8: Add edge (r,d) to & > Room-to-Door connection
9: end if
10: end for

11: end for
12: for all door dq,d, € D do

13: if type(dy, d2) = Corridor then
14: Add edge (dy,dz) to & > Hallway connection
15: end if

16: end for

17: for all exit door e € D do

18: Add edge (e, r) for the nearest roomr € N
19: end for

20: end procedure

21: procedure GRAPHOPTIMIZATION(G)

22: Initialize Eopt = O

23: for all pair of rooms (ry,7;) € N do
24: Compute shortest path P (ry,r2) in G
25: Add nodes and edges in P (r1, 2) to Eopt

26: end for
27: for all room r € N do

28: Connect r to the nearest exit e € D via shortest path
29: Add corresponding edges to Eqpt

30: end for

31: Prune edges not in Eopt from G

32: end procedure
33: Return: Optimized graph G = (N, Eopt)

This optimized representation forms the final output of the Tesser-
act, supporting various applications including indoor route plan-
ning, area surveillance, and space utilization analysis. In the follow-
ing section, we describe the experimentation framework used to
evaluate the proposed approach, detailing the datasets, setup, and
performance metrics employed in our empirical studies.

4 Evaluation

4.1 Input Data and Setup

To evaluate the effectiveness and scalability of our proposed Tesser-
act, we conduct experiments on three distinct floor plan datasets.
Each dataset varies in complexity, size, and annotation density, al-
lowing us to assess performance across diverse architectural layouts.
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Figure 7: Floor plan samples from the three evaluation
datasets: Site A (left), Site B (center), and SESYD (right).

All datasets undergo a uniform preprocessing routine involving res-
olution normalization, noise reduction, and contrast enhancement
to improve text detection and segmentation accuracy.

Datasets. We draw on two large-scale floor plan datasets, referred
to as Site A and Site B, as well as a smaller-scale dataset from SESYD,
summarized in Table 1 and visualized in Figure 7.

o Site A: Comprising three high-resolution floor plan images,
each covering an extensive indoor area with more than 15 an-
notated rooms or regions. These images are subdivided into
a total of eight patches with varying dimensions, reflecting
diverse structural layouts and wall arrangements.

o Site B: Consisting of four large-scale floor plans sampled
at a fixed patch size, yielding four patches in total. This
consistent segmentation enables a uniform approach to fea-
ture extraction and allows fair comparisons of algorithmic
performance across similarly sized patches.

o SESYD: A collection of ten smaller, more structured archi-
tectural floor plans. Each image is equally sized and retains a
fixed patch dimension, providing a benchmark for testing the
pipeline on compact and systematically annotated spaces.

Implementation Details. All experiments are carried out on a
Linux-based high-performance system equipped with two NVIDIA
A6000 GPUs, an Intel Core 17 CPU, and 128 GB of RAM.

The Tesseract processes each floor plan (or patch) independently.
Text detection and recognition modules run on the GPU-accelerated
frameworks, followed by CPU-based routines for wall masking,
node generation, and graph construction. Typical runtime per floor
plan patch ranges from 1-3 minutes, depending on image resolution
and the complexity of the floor plan topology.

4.2 Metrics and Guidelines for Results

The proposed Tesseract is evaluated using metrics of navigability, ef-
ficiency, and graph quality, capturing its ability to produce accurate,
compact, and traversable indoor floor plan graphs.

4.2.1  Navigability and Graph Completeness. Producing a graph
representation that reflects the floor plan’s structural connectivity
is critical. To quantify this, we define two complementary metrics:
navigational completeness and exit reachability.

Navigational Completeness. Let R be the set of all room nodes
in the graph. For any pair of distinct rooms (r;,7;) € R, we define
reachable(r;, 7j) as a boolean function that evaluates to true if a
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Table 1: Summary of Floor Plan Datasets

Attribute Site A Site B SESYD
# Floor Plans 3 4 10
# Patches 22 18 10
Patch Size (px) Variable | 1500x1500 | 1024x1024
Resolution (px/m) 300 200 150
Avg. Rooms/Patch 124 87 8

valid path exists between r; and r; in the graph. Navigational com-
pleteness, denoted by € [0, 1], is computed as the proportion of
mutually reachable room pairs:

Z(ri,rj)ER 1(reachable(r, 7))
IRIx (IR| = 1) ’

where 1(+) is the indicator function. This metric is further ex-
tended to verify exit accessibility by ensuring that each room node
is also connected to at least one designated exit node.

A curated ground-truth graph, derived from manual inspection
of each floor plan, serves as the benchmark for completeness. Com-
paring the generated graph to this ground truth helps confirm that
no rooms or subgraphs remain isolated and that the final output
aligns with the expected architectural layout.

Exit Reachability. In addition to inter-room connectivity, we also
evaluate whether each room has access to at least one exit. Let &
denote the set of exit door nodes. For every room node r; € R, we
define reachable(r;, &) as true if a valid path exists from r; to any
node in &. Exit reachability is then measured as the proportion of
rooms from which at least one exit is reachable:

2 rier 1(reachable(r;, £))
€=
IR]
This metric provides a practical check on the usability of the
graph for safety-critical tasks such as evacuation planning.

4.2.2  Computational Efficiency. We evaluate computational perfor-
mance by measuring the total runtime per floor plan or patch, from
raw input to final graph. This end-to-end runtime encompasses:

e Preprocessing Overhead: Image binarization and text an-
notation stages.

e Segmentation and Node Creation: Floodfilling, label fil-
tering, and node/seed generation.

e Graph Construction: Door detection, node-to-node link-
ing, and metadata assignment.

e Optimization: Shortest-path calculations, pruning strate-
gies, and final data serialization.

By reporting both the overall and per-stage runtimes, we iden-
tify potential bottlenecks (e.g., door detection on large, complex
floor plans) and demonstrate the scalability of the Tesseract across
datasets with varying sizes and complexities.

4.2.3  Graph Structure and Optimization Impact. To quantify how
effectively the system balances representational detail with minimal
redundancy, we track fundamental graph characteristics:

e Node and Edge Counts: The total number of nodes (|N)
and edges (|&]) provides an immediate measure of complex-
ity. A high node or edge count may indicate over-segmentation
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or overly detailed corridor sampling, whereas excessively
low counts risk compromising navigability.

e Pruning Effectiveness: We compare the node and edge
counts before and after applying shortest-path-based prun-
ing. A significant reduction without a drop in navigational
completeness suggests that unnecessary pathways have been
successfully removed.

o Storage Footprint: Since the final graph is exported in a
JSON-based format, the file size offers a straightforward
gauge of representational compactness. Marked decreases in
JSON size indicate that the system has condensed the floor
plan structure into an efficient yet navigable graph.

4.24 Geometric Fidelity. When travel times or route distances mat-
ter for applications such as evacuation planning, geometric fidelity
becomes a critical factor. We assess how well the final graph’s path
distances align with the floor plan’s spatial reality:

e Pixel-Based Ground Truth: For each pair of room centers
(ri, rj), we measure the Euclidean distance distqoor plan (7i> 7)
directly from the annotated floor plan image.

e Graph-Based Distance: We then compute the shortest path
distgraph (ri,7j) in the final graph, accounting for corridor
traversal and door transitions.

. . . distgraph (72,7
¢ Distance Ratio: We use the ratio p(r;, rj) =  distgraph (rar;)

distfoor plan (ri’rj)

to quantify how closely the graph-based path length approxi-
mates the actual floor plan distance. A ratio near 1.0 indicates
minimal distortion, while larger deviations suggest either
oversimplification or unmodeled detours.

Aggregating these ratios over all room pairs in R yields a mean
distance ratio j that provides a measure of geometric fidelity.

By integrating these metrics, our evaluation framework cap-
tures both the accuracy of the resulting indoor graph—reflected
in navigability, completeness, and geometric fidelity—and its effi-
ciency—demonstrated through runtime, graph compactness, and
minimized redundancy. In the subsequent section, we present qual-
itative and quantitative results for each of the three datasets in-
troduced in Section 4.1, examining how Tesseract performs under
diverse architectural scales and configurations.

5 Results
5.1 Navigability and Graph Completeness

This subsection presents an in-depth analysis of how effectively the
proposed Tesseract preserves connectivity across rooms and exits
in the final, pruned graph. We first report the overall navigational
completeness for each dataset—Site A, Site B, and SESYD—and then
delve into exit reachability e, examining the extent to which all
rooms can access designated exit doors.

Overall Connectivity. Table 2 provides a summary of navigational
completeness scores, defined as the proportion of pairwise room
connections present in the final graph. These values reflect how well
Tesseract captures inter-room paths and corridor transitions given
its text-detection, floodfilling, and door-classification modules.

SESYD achieves the highest navigational completeness, nearing a
perfect score of 0.98 (Table 2). This strong connectivity stems from
the dataset’s simpler and more structured layouts, which reduce
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Table 2: Navigational Completeness and Exit Reachability

Dataset Navigational Exit. ] Ma.in Source.s of
Completeness | Reachability Disconnection
Site A 0.93 +0.02 0.90 + 0.03 phfiifidpﬂiﬁrﬁh
Site B 0.90 + 0.03 0.86 + 0.04 Hig};gﬁﬁgﬁfyty’
SESYD 0.98 +0.01 0.96 + 0.01 Doof)rf;zf;:tizlﬁons

the likelihood of ambiguous boundaries or overlapping door place-
ments. The few disconnections observed (roughly 2%) primarily
arise from missed doors, typically when the Faster R-CNN model
fails to detect small or partially occluded doorways.

Site A and Site B both exhibit slightly lower completeness scores,
attributed to their larger, more complex floor plans, and higher
variability in room sizes. In Site A, the average completeness of 0.93
reflects occasional failures in door detection along extremely long
corridors. In some cases, overly conservative floodfilling around
thick walls contributes to incomplete room connectivity. Mean-
while, Site B shows a marginally lower mean completeness (0.90),
which appears tied to its smaller patch sizes and the high density
of doors per patch. When a door is missed in such a confined patch,
entire room clusters risk isolation unless alternative routes exist.

Exit Reachability. Exit reachability, also listed in Table 2, evalu-
ates whether every room node in the final graph can access a desig-
nated exit node. For SESYD, 96% of rooms achieve exit connectivity,
reaffirming the dataset’s relatively simple layouts. By contrast, Site
A and Site B demonstrate a modest drop in exit reachability (0.90
and 0.86, respectively) compared to their overall completeness. This
discrepancy highlights that while many rooms remain intercon-
nected, certain missed or misclassified doors near external bound-
aries can sever paths leading outside. In Site B, doors that appear
only within patch overlaps occasionally go undetected, impeding
the connection between entire interior segments and exit nodes.

Overall, these results confirm that our approach yields high navi-
gational completeness in simpler architectural settings and remains
robust in larger, more complex sites. Nevertheless, improving door
detection accuracy—particularly for edge cases where doors are
partially obscured or conflated with text—could further enhance
connectivity. In the next subsection, we discuss computational effi-
ciency results and explore how the pipeline’s runtime scales with
floor plan size and patch density.

5.2 Computational Efficiency

The runtime performance of the Tesseract is examined by break-
ing down execution times into four modules: (i) Preprocessing and
Segmentation, (ii) Door Detection, (iii) Door Classification, and (iv)
Graph Construction and Optimization. Table 3 summarizes the av-
erage runtimes for each module across our three datasets, along
with the total end-to-end processing time. As shown in Figure 8,
processing time approximately scales linearly with the number
of detected text labels, with large-scale datasets exhibiting higher
runtimes due to increased scene complexity.

Overall Runtime Trends. As shown in Table 3, door detection
and door classification consistently consume the largest portion
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Figure 8: Processing time vs. number of text labels. Sites A &
Site B exhibit linear scaling with floor plan complexity, while
SESYD (right) shows lower runtime due to simpler layouts.

Table 3: Per-Module and Total Average Runtime (in seconds).
Values represent the mean =+ standard deviation across the
patches in each dataset.

Module Site A Site B SESYD
Preprocessing | g0,y 7 | 121423 | 62413
Segmentation

Door 36.2+3.8 | 40.5+4.7 | 30.7+2.6
Detection

Door

Chasification | 22:6+2:6 | 251429 | 16.4%22
Graph Const. |13 7 o0 | 157431 | 102413
Optimization

Total 823+101 | 93499 | 635+538

Table 4: Impact of Contrast Enhancement on Text Merg-
ing. Values represent the average number of bounding-box
merges needed per patch before and after preprocessing.

Dataset | Preprocessing Off | Preprocessing On | Reduction %
Site A 27.2+3.5 4.1+1.1 85%
Site B 19.8 £2.8 3.6+ 1.0 82%
SESYD 123+ 1.7 1.9+ 0.6 85%

of processing time, especially in Site B, which features numerous
smaller regions and a high density of doorways. Here, detecting
and subsequently classifying every door can account for more than
half of the total runtime. By contrast, SESYD benefits from fewer
rooms per patch, reducing the time spent on both bounding-box
generation and classification.

Preprocessing and Segmentation. While preprocessing (resolution
normalization and contrast enhancement) costs relatively little time,
it substantially reduces fragmented text detections in subsequent
steps. Table 4 illustrates how increasing contrast lowers the average
number of text bounding-box merges by over 80% across all datasets,
thereby accelerating downstream text recognition.

For segmentation, floodfilling remains efficient even in Site A and
Site B. Most segmentation issues stem from structural complexities
like auditorium seating, rather than wall thickness per se. These
obstacles can occasionally lead to partial floodfills, with potential
ramifications for connectivity if not rectified later in the system.

Door Detection and Classification. In larger-scale floor plans, door
detection occupies between 30 to 40 seconds on average, reflecting
the time spent identifying bounding boxes for a high volume of
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Table 5: Node and Edge Counts Before and After Pruning
(Mean =+ SD). Reduction % is the proportion of nodes/edges
removed relative to the original graph.

Data Nodes Edges Node Edge
Before After Before After Red % | Red %
Site A 2088 +£280 | 459+ 72 | 5820 £344 | 1512 +98 78% 74%
Site B 1221 £ 190 | 420 +58 | 4230 + 261 1144 + 85 66% 73%
SESYD 85+ 16 52+ 10 210 + 30 136 £ 18 39% 35%

potential door candidates. The subsequent door classification step
entails examining pixel-level context (room vs. corridor vs. outdoor)
for each bounding box, and hence dominates overall runtime in
datasets with many closely spaced doors. For instance, Site B ex-
hibits particularly prolonged classification times (25.1+2.9 seconds),
as multiple small patches with dense door placements necessitate
repeated context checks.

Graph Construction and Optimization. Constructing the graph
by linking room, corridor, door, and exit nodes is relatively effi-
cient, averaging about 10-15 seconds in total across all datasets.
Once complete, graph optimization prunes redundant edges and
calculates shortest paths to solidify connectivity. Though this final
phase is shorter in duration (roughly 10-20% of total runtime), it
yields important benefits: consolidated node sets and streamlined
edge topologies facilitate more efficient routing queries during
subsequent use cases.

Overall, the Tesseract remains computationally viable for both
large-scale and smaller datasets, maintaining an approximate end-
to-end runtime under two minutes per patch even in the most
complex scenarios. The next subsection (Section 5.3) discusses how
these constructed and pruned graphs manifest in practice, high-
lighting node/edge distributions and the corresponding storage
benefits of removing extraneous connections.

5.3 Graph Structure and Pruning Effectiveness

As noted in Section 5.2, graph construction and optimization ac-
count for only a small share of runtime but are essential for produc-
ing compact, navigable indoor graphs. This subsection highlights
the achieved node and edge reductions from pruning and the corre-
sponding storage savings in the final JSON output.

Node and Edge Counts Before & After Pruning. Following door
classification, each patch is initially represented by a fully connected
graph encompassing all discovered rooms, corridors, outdoor nodes,
and doors. Table 5 illustrates how optimization removes redundant
edges and, in some cases, merges nodes representing near-identical
positions in the corridor or hallways. As a result, the final graph
experiences a considerable reduction in overall complexity without
impairing navigational completeness (see Section 5.1).

Notably, Site A and Site B exhibit more substantial edge reduc-
tions (over 74%) and node reduction (over 78%), largely due to over-
lapping corridor nodes and door connections that can be pruned
without impacting reachability. Although SESYD benefits less dra-
matically from pruning (around 35% of edges removed and around
39% of nodes removed), it still sees modest simplification gains
owing to its smaller scale and lower corridor redundancy. Crucially,
none of these modifications degrade navigational completeness:
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Table 6: Average JSON File Size Before and After Pruning.

Dataset Be:fore A.fter Reduction
Pruning (KB) | Pruning (KB) %

Site A 889 + 85 218 + 28 75%

Site B 905 + 79 225+ 25 71%

SESYD 345 + 40 45+ 11 87%

the system ensures that every valid route from a room to another
(or to an exit) persists post-optimization.

Final Graph Storage Footprint. To quantify how these structural
reductions translate into file size savings, we store each patch’s
graph in a JSON-based format and measure its size before and
after pruning. Table 6 shows that all datasets see meaningful file-
size reductions, reflecting the removal of extraneous edges and
consolidated node representations.

In Site A, broader corridors and dense door connectivity result in
an average file-size reduction of nearly 75%. For Site B, finer patch
segmentation leads to the removal of many corridor-to-door edges,
reducing storage by 71%. In SESYD, with fewer true room nodes
and edges, the final graph is on average 87% smaller.

Taken together, these results underscore the effectiveness of
pruning for eliminating needless complexity in corridor-dense or
door-rich environments, facilitating both storage efficiency and ease
of navigation. Notably, the Tesseract’s design ensures that no critical
route or exit pathway is removed during optimization, preserving
the high connectivity reported in Section 5.1. Consequently, the
final graphs remain well-suited for tasks like evacuation routing and
indoor wayfinding, while maintaining compact file representations
that can be rapidly loaded or transmitted. In the next section, we
analyze selected floor plans visually and discuss the qualitative
aspects of the pruned graphs.

5.4 Geometric Fidelity

Although the focus of our evaluation primarily centers on navigabil-
ity and structural completeness, certain applications (e.g., detailed
evacuation planning or resource allocation) may demand that the
final graph accurately reflects real-world distances. In such cases, we
measure geometric fidelity by comparing the Euclidean distances
directly derived from the floor plan with those computed along the
shortest paths in the pruned graph.

Table 7 summarizes the mean and standard deviation of distance
ratios for each dataset. These values are derived from at least 12-20
representative room pairs per floor plan in Site A, Site B, and SESYD.

Overall, SESYD demonstrates the smallest deviation from unity,
with a mean ratio of 0.96 and a maximum deviation of 0.13. This
near-ideal performance is attributable to the dataset’s simpler lay-
outs and smaller scale, where corridors are typically straight, and
doors closely align with the conceptual “centers” of edges.

Conversely, Site B shows greater variance, with a maximum de-
viation of 0.28. This is primarily due to corridor sampling and door
classification in areas with complex hallways or irregular rooms. In
such cases, the shortest path within the graph sometimes marginally
overestimates or underestimates true Euclidean distances, reflecting
a partial “shortcut” effect or unavoidable detour.

Despite these deviations, most room pairs in both large-scale
(Site A, Site B) and smaller-scale (SESYD) floor plans exhibit distance
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Table 7: Average Distance Ratios and Their Standard Devi-
ations Across Datasets. Ratios close to 1.0 reflect minimal
distortion between floor plan and graph-based distances.

Dataset | Mean p | Std. Dev. | Max. Deviation
Site A 0.94 0.07 0.22
Site B 0.92 0.10 0.28
SESYD 0.96 0.04 0.13

ratios above 0.90. For navigation and planning purposes, this level of
geometric fidelity is typically sufficient, particularly if the primary
objective is to ensure connectivity rather than precise distance
measurement. Where more accurate distance estimates are critical
(e.g., evacuation route timing), additional refinements—such as
higher-resolution corridor sampling or post-processing adjustments
to edge weights—can improve alignment between real-world and
graph-based distances.

Thus, while geometric fidelity may be optional in many practi-
cal settings, the results demonstrate that the Tesseract preserves
distances reasonably well, especially in less convoluted architec-
tural scenarios. Future work could incorporate room shape priors
or multi-seed sampling tailored to hallway geometry to further
narrow the gap between graph-based and true Euclidean distances.

5.5 Discussion

Quantitative results demonstrate that Tesseract consistently achieves
high navigational completeness and substantial graph simplifica-
tion across diverse architectural layouts. In both large-scale univer-
sity buildings and compact, structured environments, the system
maintains over 90% inter-room connectivity and reduces redundant
graph elements by up to 78% in nodes and 74% in edges. These
results validate its scalability and adaptability, showing that it gen-
eralizes well to varying levels of complexity without compromising
performance.

Door detection and classification are the most critical factors
in maintaining graph connectivity. Missed or misclassified doors,
especially in dense areas with frequent transitions, can create iso-
lated subgraphs or limit exit access. Structural complexities such as
irregular walls, embedded fixtures, or narrow junctions may also
reduce segmentation accuracy, causing incomplete boundaries or
adjacency errors. Enhancing these modules with context-aware de-
tection or geometric reasoning could improve robustness. Overall,
however, the system remains highly reliable, offering a practical
solution for large-scale indoor map generation and navigation.

6 Conclusion

This paper introduced Tesseract, a novel deployable system that
constructs navigable indoor graphs solely from low-semantic static
floor plan images. Tesseract circumvents the need for advanced sen-
sors or specialized modeling software. By combining deep learning
techniques for text and door detection with our intelligent floodfill-
based floor plan segmentation, our system extracts semantically
meaningful nodes and edges, culminating in a graph representation
optimized through shortest-path pruning.
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