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Abstract
Indoor maps are essential for navigation, resource allocation, and

autonomous operation in complex environments, yet creating them

at scale has long been impeded by high costs and specialized hard-

ware requirements. We present Tesseract, a modular system that

transforms ordinary low-semantic floor plan images into naviga-

ble graph structures, without requiring specialized sensors or 3D

modeling tools. Through Tesseract, we integrate deep learning mod-

ules for text detection and door classification. We then implement

a novel floodfill-based segmentation and graph optimization so-

lution. Tesseract ultimately generates semantically rich, compact

graph representations of the original floor plans that are computa-

tionally parsable for indoor navigation applications. We evaluate

Tesseract across two large-scale university buildings as well as a

benchmark dataset, demonstrating high navigational completeness

despite variations in layout complexity. The system processes floor

plans efficiently, with runtime scaling linearly to the number of de-

tected regions, thus remaining practical for large-scale deployments.

Graph pruning reduces the initially dense connectivity—typically

quadratic in the number of regions—to a sparse structure, yield-

ing up to 78% fewer nodes and 70% fewer edges, all without com-

promising connectivity. Moreover, geometric fidelity is preserved

within 80–86% of true real-world distances. These findings establish

Tesseract as a robust and scalable solution, broadening access to

automated indoor navigation and spatial analytics.

CCS Concepts
• Information systems → Geographic information systems; •
Computing methodologies → Image-based rendering; • The-
ory of computation → Graph algorithms analysis.
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1 Introduction
Understanding and utilizing indoor spaces effectively requires more

than visual representations. It demands structured,machine-readable

models that can support reasoning, navigation, and autonomous op-

eration [27, 30]. While outdoor environments have benefited from

advances in satellite imagery and large-scale geospatial annota-

tion [7, 40], comparable progress in indoor environments has been

limited. Indoor spatial data remains fragmented, and its extraction

often depends on manual modeling or specialized equipment. Nev-

ertheless, high-quality indoor models are essential across a range

of domains, including autonomous systems [13], robotics [44], aug-

mented reality [38], intelligent building management [48], and

indoor localization [17, 29]. These applications require spatial rep-

resentations that are not only geometrically accurate but also se-

mantically structured to enable reliable navigation [16, 19] task

execution [21], and system integration [14, 39].

Such models can support efficient path planning for humans and

mobile agents [9, 28, 37], improve the performance of indoor local-

ization systems [18, 29], and facilitate more intuitive interactions

within human-centered spaces. However, detailed geometry alone

is insufficient. Many real-world applications require knowledge of

spatial connectivity, functional labeling, and traversability. These

properties are best captured through structured graph-based mod-

els, which abstract spatial layouts into discrete regions connected

by defined transitions. To fully realize the potential of indoor spatial

systems, there is a need to move beyond conventional map genera-

tion and toward the creation of computationally parsable navigable

graphs. These graphs provide a compact and interpretable founda-

tion for machine reasoning, encoding semantic regions, adjacency

relations, and accessibility constraints in a form that is suitable for

large-scale automation and decision-making.

In this paper, to address these challenges, we propose Tesseract,
a novel system that generates navigable indoor graphs directly

from low-semantic images. Tesseract leverages deep learning for

text detection, semantic inference, and door identification with

our novel floodfill-based segmentation algorithm and graph con-

struction techniques. Our floodfill-based methodology employs a

radial-based seeding strategy, initiating multiple floodfill opera-

tions from detected text labels used as space or room identifiers. As

such, we precisely delineate distinct indoor regions and robustly

overcome ambiguities posed by text boundaries or room artifacts

in noisy, low-semantic floor plan imagery. The resulting output is

a structured graph representation that encodes both the geometric

layout and semantic content of indoor environments. Our modular

architecture enables targeted deployment of machine learning mod-

els on well-bounded subtasks, allowing for straightforward model

updates and compatibility with advances in computer vision. This

https://doi.org/10.1145/3748636.3762771
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design ensures that the system remains both flexible and adaptable

while retaining interpretability and control over each stage of the

pipeline.

We build Tesseract to be a truly deployable system that addresses

concerns of privacy, practicality, and scale. It safeguards privacy

by processing offline, pre-existing floor plans without relying on

sensitive user or real-time data. This makes it well-suited for deploy-

ment in secure institutional environments where data protection is

paramount. Tesseract only uses basic, low-semantic floor plan im-

ages, commonly found in fire evacuation guides, information kiosks

in malls and airports, or architectural records. Although modern

CAD formats (e.g., DXF, DWF) offer detailed vector representations,

with tools that can extract structured primitives from them, such

files are often unavailable, or may include sensitive architectural

metadata or proprietary design layers, making them unsuitable

for broad distribution due to privacy and ownership concerns; in

contrast, floor plan images are more abundant, publicly accessible,

and easier to process at scale. Finally, Tesseract avoids specialized
hardware or complicated workflows, enabling rapid navigable in-

door graph generation even for non-expert users. By addressing

the cost, complexity, and privacy barriers that have traditionally

hindered large-scale indoor modeling, Tesseract offers a practical
and scalable approach for producing structured, machine-usable

spatial representations from widely available visual inputs.

We comprehensively evaluate Tesseract across two large-scale

university buildings as well with the SESYD [11] benchmark. Our

evaluation spans four key dimensions: navigational completeness,

exit reachability, computational efficiency, and geometric fidelity.

Our results show that Tesseract consistently produces highly con-

nected graphs, with average navigational completeness scores higher

than 90%, and reaching 98%. Exit reachability remains above 85%

across all datasets. In terms of efficiency, the system maintains

a total runtime of under two minutes per image patch, even on

large and densely annotated floor plans. Our efficient solution, via

structural pruning, achieves significant compression—up to 78%

reduction in nodes and 74% in edges—without compromising con-

nectivity. Moreover, geometric fidelity remains high, with over

90% alignment between graph-based and true Euclidean distances

across room pairs. These results highlight Tesseract’s robustness,
scalability, and suitability for generating compact, semantically rich

indoor graphs from low-semantic inputs.

2 Related Work
This section examines the progression of indoor modeling, from

robotics-driven approaches to data-centric techniques that mini-

mize reliance on specialized hardware. We also review methods

that utilize CAD drawings as input. Unlike prior approaches, our

pipeline processes static floor plan images to generate structured,

navigable indoor graphs—sidestepping the need for specialized sen-

sors or CAD/BIM models while supporting scalable deployment.

In mobile robotics, robots rely heavily on their capacity to both

perceive and map the environment [], a task accomplished through

Simultaneous Localization And Mapping (SLAM) [12]. SLAM en-

ables robots to construct spatial maps, integrate sensory data, and

localize themselves for various tasks. However, these spatial maps

are primarily geometric, lacking the semantic richness needed for

effective interaction in human-oriented spaces; they typically omit

information such as room names, office numbers, space types (e.g.,

lab, lounge, restroom), or the functional purpose of a region—details

that are crucial for applications like context-aware navigation, emer-

gency response, or space utilization analysis [1, 46]. This limita-

tion has prompted the development of semantic indoor mapping

techniques, which incorporate meaningful information into the

mapping process. Some approaches involve human collaboration,

such as engaging in conversations to enrich maps with semantic

data [4], while others utilize machine learning to improve scene

comprehension and region identification. Such solutions include

the creation of hierarchical 3D scene graphs that define spatial

relationships between rooms [20], vision-to-language models that

describe scenes [6], and region classifiers that label sensor data

from RGB-D inputs [41]. Although these advances in robotic map-

ping are promising, their reliance on complex hardware remains

a significant barrier to broader adoption, limiting their practical

use outside specialized environments [5, 22, 42]. Contrary to these

methods, our approach removes dependence on robotics platforms

and high-end sensors by leveraging widely available data sources.

To bypass the reliance on specialized sensors or robotic platforms,

some approaches leverage pre-existing symbolic or textual data

about buildings. These data-driven semantic methods focus on using

structured sources such as CityGML, indoorGML [36], and Apple’s

IMDF. These formats are rich in semantic and topological details

but require significant manual labor and in-depth expertise [25].

In response, recent developments suggest the use of natural lan-

guage descriptions of building features, paired with advanced deep

learning models such as Stanford Scene Graph Parser [8] or Gener-

ative Adversarial Networks (GANs) [33], to produce graph-based

indoor maps. This approach minimizes dependence on intricate

data formats but still demands a comprehensive understanding of

the building’s layout and function, making it challenging to crowd-

source or delegate to general users. Additionally, these models

require extensive datasets of indoor environments for training, a

task complicated by privacy concerns and the inherent sensitivity

of indoor space data.

Separately, a growing body of work focuses on extracting spa-

tial representations directly from visual documents such as CAD

drawings or 2D floor plan images. CAD files typically contain pre-

cise geometric attributes, enabling the reconstruction of robust

3D models that facilitate navigation and analytical tasks [31, 32].

Effective use of CAD data often necessitates specialized expertise,

comprehensive preprocessing, and compliance with standardized

formats—factors that can hinder large-scale deployment. As an alter-

native, recent approaches have focused on automatically deriving

indoor spatial information directly from 2D floor plan images. For

instance, walls, doors, and other structural elements can be automat-

ically identified using deep learning techniques for segmentation

and object detection to generate semantically rich indoor maps

[23, 43, 47]. While these methods eliminate the need for sophisti-

cated hardware and reduce complexity, they rely on comprehensive

training datasets and careful tuning to handle floor plan style and

content variations. Ongoing efforts aim to enhance the robustness

of these workflows, ensuring reliable indoor mapping from diverse

data sources, further lowering the barriers to adoption.
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With the rapid evolution of Vision-LanguageModels (VLMs), it is

natural to ask whether general-purpose multimodal systems—such

as GPT-4V or Gemini—can perform end-to-end floor plan under-

standing by directly generating a structured graph from an input

image. While VLMs have shown promising results on small or syn-

thetic floor plans, their performance deteriorates on complex or

large-scale layouts due to limitations in spatial precision, global con-

sistency, and fine-grained localization[10, 24]. These models often

miss small but critical features (e.g., narrow doorways) or generate

inconsistent topologies that break navigational connectivity[45].

Moreover, they currently offer no guarantees of semantic alignment,

graph completeness, or reproducibility—attributes that are essential

for navigation and safety-critical applications[35]. Beyond perfor-

mance, reliance on proprietary cloud-based APIs raises privacy

concerns and complicates deployment at scale [15, 26]. In contrast,

Tesseract is designed specifically for this task: it operates offline,

supports large architectural inputs, and produces structured, high-

fidelity graphs optimized for semantic accuracy and graph-theoretic

integrity. While VLMs may eventually complement these systems,

current limitations underscore the continued need for task-specific,

transparent, and controllable systems like Tesseract.

3 Tesseract: A Modular Architecture
3.1 Architectural Overview
The proposed Tesseract is a modular framework designed to con-

vert annotated floor plan images into graph-based indoor graphs

suitable for downstream tasks such as navigation, spatial analytics,

and simulation. The system prioritizes robustness and scalability by

decomposing the mapping process into distinct processing stages,

each of which can be refined or replaced independently (see Figure

1 for a schematic overview). This modular design ensures that im-

provements in one stage (e.g., text recognition) naturally propagate

throughout the entire system without necessitating major revisions

in the other components.

At a high level, Tesseract begins by extracting textual labels (e.g.,

room numbers, corridor identifiers) using a deep-learning-based

text detection module. These detected labels are then refined and

merged to eliminate duplication or splitting errors. Next, the system

employs a floodfill-based spatial segmentation approach to delin-

eate each labeled region (rooms, corridors, and outdoor spaces) in

the image. From these segmented regions, an initial set of nodes

is generated, capturing essential spatial entities (e.g., individual

rooms). Additional nodes corresponding to corridor and outdoor

areas are then introduced systematically to ensure a high-resolution

coverage of navigable spaces.

Once the major structural regions have been established, a spe-

cialized door detection model identifies and classifies doors, which

serve as critical connectors between rooms, corridors, and outdoor

areas. The detected door locations are then used to anchor connec-

tivity relationships by linking adjacent spatial regions, enabling the

construction of an initial graph representation over the segmented

floor plan. This preliminary graph captures the topological layout

of the environment, including key transitions between enclosed and

navigable spaces. To improve efficiency and usability, the graph is

subsequently refined through shortest-path analysis and structural

pruning, retaining only the minimal set of nodes and edges required

to preserve full navigational connectivity.

3.1.1 Assumptions and Constraints. To ensure consistent and re-

liable performance, the Tesseract operates under a set of assump-

tions regarding the input floor plans. Annotations must be clear

and explicit, with rooms, corridors, and outdoor areas distinctly

labeled. Unlabeled or ambiguous regions are excluded or flagged

for manual review. Room identifiers (e.g., “101”, “102A”) must be

unique within each floor plan to prevent ambiguity during text

extraction and graph generation. A room is defined as a bounded

polygonal region enclosed by walls and containing at least one

identifiable door. Open-concept areas without defined boundaries

are excluded for consistency. Floor plans should represent only core

structural elements such as walls, doors, and spatial boundaries,

while omitting interior details like furniture, icons, or elevation

markers. This assumption simplifies structural parsing and reduces

false detections. Although not all floor plans strictly conform to

these conditions, many sources such as evacuation maps, blueprints,

and real estate diagrams are sufficiently aligned. These constraints

ensure that each component of the system, from text recognition

to graph construction, functions under well-defined and consistent

conditions.

3.2 Floor Plan Patching and Preprocessing
The first stage of the Tesseract involves preprocessing large-scale
floor plan images using the Floor Plan Patcher module. Raw floor

plans—particularly those corresponding to multi-wing buildings

or campus-scale facilities—often exceed 5000×5000 pixels in reso-

lution, making direct processing computationally expensive and

error-prone for vision-based models. Moreover, the fixed input size

constraints of deep learning modules (e.g., CRAFT and Faster R-

CNN) necessitate consistent image dimensions to maintain spatial

context and recognition fidelity.

Therefore, each high-resolution input image is automatically par-

titioned into a grid of non-overlapping 1024×1024 pixels patches.
This patching strategy ensures uniformity during model inference,

improves GPU memory efficiency, and localizes the detection scope

to regions with a manageable visual footprint. Additionally, it min-

imizes the likelihood of detection failures due to scale variation or

contextual dilution—issues that frequently arise when processing

very large spatial canvases in a single pass.

Each patch is processed independently through the downstream

stages of the system (text detection, segmentation, door detection,

etc.), and results are later reassembled into a unified graph represen-

tation. This modular decomposition preserves the spatial integrity

of the original layout while enabling scalable, parallelized process-

ing across varied architectural forms.

3.3 Text Detection and Spatial Segmentation
After patching high-resolution floor plans into standardized image

segments, Tesseract focuses on two critical tasks: text detection
and floodfill-based spatial segmentation. By accurately identifying

textual labels (e.g., room identifiers) and delineating corresponding

spatial regions, this step establishes the fundamental building blocks

for graph construction and subsequent navigation.
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Figure 1: Overview of the Tesseract, highlighting key modules: floor plan patching, text detection, door detection and classifica-
tion, spatial segmentation, graph construction, and pruning to generate a final pruned graph representation.

Figure 2: Post-processing of text detection: multiple bound-
ing boxes resulting from fragmented text inference (left) are
merged based on spatial proximity (center), yielding a uni-
fied room node seed (right).

Text Detection. We begin by applying the pre-trained CRAFT

(Character Region Awareness for Text Detection) MLT-25K [3]

model to localize textual elements within the floor plan. Specifically,

three main categories of labels are extracted:

(1) Room identifiers (e.g., “1001”, “102A”),
(2) Corridor or hallway labels, and
(3) Ancillary annotations such as exits or directional markers.

After generating bounding boxes for each detected text instance, a

distance-based merging algorithm unifies fragmented boxes. For

instance, if CRAFT partially segments a room number into two

bounding boxes (e.g., “1011” being split into “101” and “1”), the al-

gorithm identifies these bounding boxes as overlapping and merges

them into a single detection (refer to Figure 2).

Refined bounding boxes are passed to a VGG BiLSTM-CTC

model [2], trained on a domain-specific dictionary to extract textual

content. Non-essential text (e.g., scale bars, markers) is discarded,

while valid labels are retained. The center of each bounding box

corresponding to a room, corridor, or outdoor label is used as a

node candidate for graph construction.

Floodfilling for Spatial Segmentation. Once textual labels are iden-
tified, the system employs a seed-based floodfilling algorithm to

segment the floor plan image into coherent, labeled regions. Each

bounding box center acts as a primary seed, supplemented by ad-

ditional seed points distributed radially (with radius 𝑟 = 20 px and

angular step size Δ𝜃 = 5𝑝𝑥 ). This radial seeding strategy helps

overcome issues where the bounding box center might fall on the

interior of a text label (e.g., inside the “loop” of a digit), preventing

a proper floodfill initiation.

Floodfilling progresses outward from each seed until encoun-

tering black pixels that denote walls or other impassable barriers.

This ensures that the resulting segmented areas remain true to the

architectural boundaries. Once the floodfill completes, all pixels

attributed to a particular seed are linked to the node corresponding

to that label (e.g., a room node). Figure 3 illustrates the outcome of

these segmentation steps in a representative floor plan.

Following segmentation, region boundaries and sizes are ana-

lyzed for consistency. Unassigned pixels, if any, are flagged for

further review, ensuring comprehensive coverage across the image.

These refined labels and segmented regions thus form a founda-

tional layer for the subsequent graph-building process. In the next

section, we discuss how these segmentation outputs are integrated

with corridor and outdoor node placements, enabling a richer rep-

resentation of the navigable spaces within the floor plan.

Algorithm 1 summarizes the text detection and seeded floodfill-

ing procedure.

3.4 Graph Initialization and Door Detection
Building on the labeled and segmented regions established in Sec-

tion 3.3, the next stage of the Tesseract constructs an initial graph

representation and identifies doors that serve as critical connectors

between spatial units. To capture the full navigable space, addi-

tional nodes are systematically placed within corridor and outdoor

regions. Detected doors are then classified and used to define edges
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Figure 3: Floodfilling process for spatial segmentation: ini-
tial seed points are distributed radially around each text
label (left), region growing is performed via seeded flood-
filling (center), and the resulting labeled regions form the
segmented floor plan (right).

between adjacent regions, enabling the construction of a coherent

and well-connected topological graph.

Populating Corridor and Outdoor Nodes. After determining room

labels and their corresponding floodfilled regions, a wall mask is

generated from the floor plan image to identify structural bound-

aries. To prevent node placements from overlapping with walls or

other impassable features, the wall mask is expanded (buffered) by

a margin 𝛿 . Only pixels outside this buffered region are deemed

valid for node placement.

Within the valid area, corridor and outdoor nodes are positioned

at regular intervals according to a grid-based stepping mechanism.

Each grid cell of size 𝑠 × 𝑠 (with 𝑠 = 20 px) is sampled to yield

uniformly spaced nodes, facilitating smooth navigation in subse-

quent graph operations. By tagging each node with its region type

(corridor or outdoor), the algorithm differentiates navigable spaces

from enclosed rooms, creating a cohesive substrate for connectivity

analysis (see Figure 4).

Door Detection and Classification. Doors link rooms, corridors,

and outdoor regions, making their detection and classification essen-

tial for reliable graph construction. We employ a fine-tuned Faster

R-CNN model[34] to locate doors within the floor plan, leveraging

Algorithm1Text Detection and Floodfillingwith Pixel Assignment

1: Input: Floor plan image 𝐼

2: Output: Segmented regions with labeled pixels

3: procedure TextDetection(𝐼 )
4: Detect bounding boxes B = {𝑏1, 𝑏2, . . . , 𝑏𝑘 } using CRAFT MLT-25K.

5: for all (𝑏𝑖 , 𝑏 𝑗 ) ∈ B, 𝑖 ≠ 𝑗 do
6: if dist(𝑏𝑖 .center, 𝑏 𝑗 .center) < 𝜖 then
7: Merge 𝑏𝑖 and 𝑏 𝑗 into one box.

8: end if
9: end for
10: Refine B, infer text𝑇 (𝑏 ) for each 𝑏 ∈ B using VGG BiLSTM-CTC.

11: Retain 𝑏 ∈ B where𝑇 (𝑏 ) ∈ {Room,Hallway,Outdoor}.
12: Extract nodes N = {𝑏.center | 𝑏 ∈ B}.
13: end procedure
14: procedure Floodfilling(N, 𝐼 )

15: for all 𝑛 ∈ N do
16: Create circle𝐶 (𝑛, 𝑟 ) of radius 𝑟 around 𝑛.

17: Generate seeds S𝑛 = {𝑠𝜃 | 𝑠𝜃 = 𝑛 + 𝑟 (cos𝜃, sin𝜃 ), 𝜃 ∈ [0, 2𝜋 ),Δ𝜃 }.
18: for all 𝑠 ∈ S𝑛 do
19: Floodfill from 𝑠 , stopping at black pixels.

20: Assign floodfilled pixels to node 𝑛.

21: end for
22: end for
23: Compute region boundaries and sizes from floodfilled areas.

24: Flag unclassified regions for further inspection.

25: end procedure
26: Return: Segmented regions with labeled pixels

Figure 4: Graph node population process: initial room nodes
are extracted (left), walls are masked and buffered (center),
and valid corridor/outdoor regions are populated with uni-
formly spaced nodes (right).

Figure 5: Post-processing of door detection: repeated bound-
ing boxes (left) are merged using a proximity threshold (cen-
ter), resulting in corrected door annotations (right).

its region proposal network to generate initial bounding boxes,

accompanied by confidence scores. A post-processing routine then

refines and merges overlapping predictions based on a defined prox-

imity threshold, ensuring that door detections align with structural

features (see Figure 5).

Each finalized bounding box is classified using the region labels

obtained from floodfilling (Section 3.3), allowing the system to

identify the door’s connectivity role within the layout. Bounding

boxes that do not yield valid spatial transitions are discarded.

Each valid door then introduces an edge between adjacent spatial

entities (e.g., room–door or corridor–door), contributing to the initial
connected graph. In the next section, we describe how these edges

and nodes are refined through graph-level optimization.

Algorithm 2 summarizes the door detection and classification

procedure.

3.5 Graph Construction and Optimization
Having assigned nodes to each region and classified the doors that

link these nodes, the next step in the Tesseract is to form a cohesive

graph representation of the floor plan. This graph serves as the

underpinning for navigable indoor maps and spatial queries, cap-

turing both localized connectivity (e.g., room-to-door) and broader

spatial relationships (e.g., corridor traversal). To maintain clarity

and computational efficiency, the graph undergoes an optimization

phase that prunes redundant edges while preserving critical paths.

Edge Creation. Edges are constructed to capture the following

essential spatial relationships:

• Room-to-Door Connectivity: Each room node is linked to

all doors that share its boundary, as determined by pixel-level

adjacency from the floodfilling stage.
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• Door-to-Hallway Connectivity: Doors connecting a room
to a corridor are used to create edges between the door node

and the relevant corridor node.

• Hallway Connectivity: Corridor nodes are interconnected
based on spatial proximity, ensuring continuous navigation

throughout the hallway network.

• Exit Connections: Exits are joined to outdoor nodes to fa-

cilitate direct transitions between indoor and outdoor areas.

Each edge is annotated with metadata (e.g., Room-to-Door, Corridor-
to-Corridor) to support targeted queries and pathfinding tasks.

Graph Optimization via Shortest Paths and Structural Pruning.
Although the initial graph encompasses all necessary nodes and

edges, some connections may be redundant, complicating naviga-

tion and increasing computational overhead. To address this, we

employ a hybrid optimization approach that combines shortest-path

calculations with strategic pruning:

(1) Initial Graph Construction: All regions (rooms, corridors, and

outdoor areas) are linked through their detected doors, pro-

ducing a fully connected structure.

(2) Shortest Paths Computation: The algorithm calculates the

shortest path between every pair of rooms, retaining the

minimal set of edges and nodes that sustain connectivity.

(3) Exit Connectivity: Each room is also linked to its nearest

exit door via the shortest path, ensuring compliance with

evacuation and accessibility requirements.

(4) Pruning Non-Essential Edges: Any connection not involved

in maintaining room-to-room or room-to-exit accessibility is

removed, leaving a streamlined graph that accurately reflects

core spatial relationships.

By preserving only the paths essential for connectivity, the re-

sulting graph strikes a balance between navigational accuracy and

computational efficiency. Figure 6 illustrates an example of such a

pruned graph, showing how redundant connections are eliminated

Algorithm 2 Door Detection and Classification

1: Input: Floor plan image 𝐼 , Regions R, Graph nodes N
2: Output: Updated graph G = (N, E) with classified doors

3: procedure DoorDetectionAndClassification(𝐼 ,N, R)

4: Detect doors D = {𝑑1, 𝑑2, . . . , 𝑑𝑚 } using a deep learning model.

5: for all door 𝑑 ∈ D do
6: Refine 𝑑.bbox to align with 𝐼 .

7: Extract pixel regions 𝑃left , 𝑃right on opposite sides of 𝑑.bbox.

8: Determine region types:

type
left

= RegionType(𝑃left, R) , type
right

= RegionType(𝑃right, R) .
9: if type

left
= Outdoor ∧ type

right
∈ {Room,Corridor} then

10: Set 𝑑.type = Exit.

11: else if type
left

= Corridor ∧ type
right

= Corridor then
12: Set 𝑑.type = Corridor-to-Corridor.

13: else if type
left

= Room ∧ type
right

= Room then
14: Set 𝑑.type = Room-to-Room.

15: else if type
left

= Room ∧ type
right

= Corridor then
16: Set 𝑑.type = Room-to-Corridor.

17: else
18: Discard 𝑑 .

19: end if
20: end for
21: Add edges (𝑛1, 𝑛2 ) ∈ E for all valid𝑑 ∈ D, connecting nodes𝑛1, 𝑛2 adjacent

to 𝑑.bbox.

22: end procedure
23: Return: Updated graph G = (N, E)

Figure 6: Graph pruning: the initial fully connected graph is
refined to remove redundant edges, yielding a streamlined,
navigable representation.

to simplify the underlying structure. The overall graph construction

and pruning procedure is summarized in Algorithm 3.

Algorithm 3 Graph Construction and Optimization

1: Input: Nodes N, Doors D, Adjacency A
2: Output: Optimized graph G = (N, E)
3: procedure GraphConstruction(N, D, A)

4: Initialize edges E = ∅
5: for all room 𝑟 ∈ N do
6: for all door 𝑑 ∈ D do
7: if 𝑑 adjacent to 𝑟 then
8: Add edge (𝑟, 𝑑 ) to E ⊲ Room-to-Door connection

9: end if
10: end for
11: end for
12: for all door 𝑑1, 𝑑2 ∈ D do
13: if type(𝑑1, 𝑑2 ) = Corridor then
14: Add edge (𝑑1, 𝑑2 ) to E ⊲ Hallway connection

15: end if
16: end for
17: for all exit door 𝑒 ∈ D do
18: Add edge (𝑒, 𝑟 ) for the nearest room 𝑟 ∈ N
19: end for
20: end procedure
21: procedure GraphOptimization(G)

22: Initialize Eopt = ∅
23: for all pair of rooms (𝑟1, 𝑟2 ) ∈ N do
24: Compute shortest path P(𝑟1, 𝑟2 ) in G
25: Add nodes and edges in P(𝑟1, 𝑟2 ) to Eopt

26: end for
27: for all room 𝑟 ∈ N do
28: Connect 𝑟 to the nearest exit 𝑒 ∈ D via shortest path

29: Add corresponding edges to Eopt

30: end for
31: Prune edges not in Eopt from G
32: end procedure
33: Return: Optimized graph G = (N, Eopt )

This optimized representation forms the final output of the Tesser-
act, supporting various applications including indoor route plan-
ning, area surveillance, and space utilization analysis. In the follow-

ing section, we describe the experimentation framework used to

evaluate the proposed approach, detailing the datasets, setup, and

performance metrics employed in our empirical studies.

4 Evaluation
4.1 Input Data and Setup
To evaluate the effectiveness and scalability of our proposed Tesser-
act, we conduct experiments on three distinct floor plan datasets.

Each dataset varies in complexity, size, and annotation density, al-

lowing us to assess performance across diverse architectural layouts.
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Figure 7: Floor plan samples from the three evaluation
datasets: Site A (left), Site B (center), and SESYD (right).

All datasets undergo a uniform preprocessing routine involving res-

olution normalization, noise reduction, and contrast enhancement

to improve text detection and segmentation accuracy.

Datasets. Wedraw on two large-scale floor plan datasets, referred

to as Site A and Site B, as well as a smaller-scale dataset from SESYD,
summarized in Table 1 and visualized in Figure 7.

• Site A: Comprising three high-resolution floor plan images,

each covering an extensive indoor area with more than 15 an-

notated rooms or regions. These images are subdivided into

a total of eight patches with varying dimensions, reflecting

diverse structural layouts and wall arrangements.

• Site B: Consisting of four large-scale floor plans sampled

at a fixed patch size, yielding four patches in total. This

consistent segmentation enables a uniform approach to fea-

ture extraction and allows fair comparisons of algorithmic

performance across similarly sized patches.

• SESYD: A collection of ten smaller, more structured archi-

tectural floor plans. Each image is equally sized and retains a

fixed patch dimension, providing a benchmark for testing the

pipeline on compact and systematically annotated spaces.

Implementation Details. All experiments are carried out on a

Linux-based high-performance system equipped with two NVIDIA

A6000 GPUs, an Intel Core i7 CPU, and 128GB of RAM.

The Tesseract processes each floor plan (or patch) independently.

Text detection and recognition modules run on the GPU-accelerated

frameworks, followed by CPU-based routines for wall masking,

node generation, and graph construction. Typical runtime per floor

plan patch ranges from 1–3minutes, depending on image resolution

and the complexity of the floor plan topology.

4.2 Metrics and Guidelines for Results
The proposed Tesseract is evaluated using metrics of navigability, ef-
ficiency, and graph quality, capturing its ability to produce accurate,
compact, and traversable indoor floor plan graphs.

4.2.1 Navigability and Graph Completeness. Producing a graph

representation that reflects the floor plan’s structural connectivity

is critical. To quantify this, we define two complementary metrics:

navigational completeness and exit reachability.

Navigational Completeness. Let R be the set of all room nodes

in the graph. For any pair of distinct rooms (𝑟𝑖 , 𝑟 𝑗 ) ∈ R, we define
reachable(𝑟𝑖 , 𝑟 𝑗 ) as a boolean function that evaluates to true if a

Table 1: Summary of Floor Plan Datasets

Attribute Site A Site B SESYD
# Floor Plans 3 4 10

# Patches 22 18 10

Patch Size (px) Variable 1500x1500 1024x1024

Resolution (px/m) 300 200 150

Avg. Rooms/Patch 124 87 8

valid path exists between 𝑟𝑖 and 𝑟 𝑗 in the graph. Navigational com-

pleteness, denoted by 𝜂 ∈ [0, 1], is computed as the proportion of

mutually reachable room pairs:

𝜂 =

∑
(𝑟𝑖 ,𝑟 𝑗 ) ∈R 1(reachable(𝑟𝑖 , 𝑟 𝑗 ))

|R| × (|R| − 1) ,

where 1(·) is the indicator function. This metric is further ex-

tended to verify exit accessibility by ensuring that each room node

is also connected to at least one designated exit node.

A curated ground-truth graph, derived from manual inspection

of each floor plan, serves as the benchmark for completeness. Com-

paring the generated graph to this ground truth helps confirm that

no rooms or subgraphs remain isolated and that the final output

aligns with the expected architectural layout.

Exit Reachability. In addition to inter-room connectivity, we also

evaluate whether each room has access to at least one exit. Let E
denote the set of exit door nodes. For every room node 𝑟𝑖 ∈ R, we
define reachable(𝑟𝑖 , E) as true if a valid path exists from 𝑟𝑖 to any

node in E. Exit reachability is then measured as the proportion of

rooms from which at least one exit is reachable:

𝜖 =

∑
𝑟𝑖 ∈R 1(reachable(𝑟𝑖 , E))

|R| .

This metric provides a practical check on the usability of the

graph for safety-critical tasks such as evacuation planning.

4.2.2 Computational Efficiency. We evaluate computational perfor-

mance by measuring the total runtime per floor plan or patch, from

raw input to final graph. This end-to-end runtime encompasses:

• Preprocessing Overhead: Image binarization and text an-

notation stages.

• Segmentation and Node Creation: Floodfilling, label fil-
tering, and node/seed generation.

• Graph Construction: Door detection, node-to-node link-
ing, and metadata assignment.

• Optimization: Shortest-path calculations, pruning strate-

gies, and final data serialization.

By reporting both the overall and per-stage runtimes, we iden-

tify potential bottlenecks (e.g., door detection on large, complex

floor plans) and demonstrate the scalability of the Tesseract across
datasets with varying sizes and complexities.

4.2.3 Graph Structure and Optimization Impact. To quantify how

effectively the system balances representational detail with minimal

redundancy, we track fundamental graph characteristics:

• Node and Edge Counts: The total number of nodes (|N |)
and edges (|E |) provides an immediate measure of complex-

ity. A high node or edge countmay indicate over-segmentation
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or overly detailed corridor sampling, whereas excessively

low counts risk compromising navigability.

• Pruning Effectiveness: We compare the node and edge

counts before and after applying shortest-path-based prun-

ing. A significant reduction without a drop in navigational

completeness suggests that unnecessary pathways have been

successfully removed.

• Storage Footprint: Since the final graph is exported in a

JSON-based format, the file size offers a straightforward

gauge of representational compactness. Marked decreases in

JSON size indicate that the system has condensed the floor

plan structure into an efficient yet navigable graph.

4.2.4 Geometric Fidelity. When travel times or route distances mat-

ter for applications such as evacuation planning, geometric fidelity
becomes a critical factor. We assess how well the final graph’s path

distances align with the floor plan’s spatial reality:

• Pixel-Based Ground Truth: For each pair of room centers

(𝑟𝑖 , 𝑟 𝑗 ), wemeasure the Euclidean distance dist
floor plan

(𝑟𝑖 , 𝑟 𝑗 )
directly from the annotated floor plan image.

• Graph-Based Distance:We then compute the shortest path

dist
graph

(𝑟𝑖 , 𝑟 𝑗 ) in the final graph, accounting for corridor

traversal and door transitions.

• Distance Ratio:We use the ratio 𝜌 (𝑟𝑖 , 𝑟 𝑗 ) =
distgraph (𝑟𝑖 ,𝑟 𝑗 )

distfloor plan (𝑟𝑖 ,𝑟 𝑗 )
to quantify how closely the graph-based path length approxi-

mates the actual floor plan distance. A ratio near 1.0 indicates

minimal distortion, while larger deviations suggest either

oversimplification or unmodeled detours.

Aggregating these ratios over all room pairs in R yields a mean

distance ratio 𝜌 that provides a measure of geometric fidelity.

By integrating these metrics, our evaluation framework cap-

tures both the accuracy of the resulting indoor graph—reflected

in navigability, completeness, and geometric fidelity—and its effi-
ciency—demonstrated through runtime, graph compactness, and

minimized redundancy. In the subsequent section, we present qual-

itative and quantitative results for each of the three datasets in-

troduced in Section 4.1, examining how Tesseract performs under

diverse architectural scales and configurations.

5 Results
5.1 Navigability and Graph Completeness
This subsection presents an in-depth analysis of how effectively the

proposed Tesseract preserves connectivity across rooms and exits

in the final, pruned graph. We first report the overall navigational
completeness for each dataset—Site A, Site B, and SESYD—and then

delve into exit reachability 𝜖 , examining the extent to which all

rooms can access designated exit doors.

Overall Connectivity. Table 2 provides a summary of navigational

completeness scores, defined as the proportion of pairwise room

connections present in the final graph. These values reflect howwell

Tesseract captures inter-room paths and corridor transitions given

its text-detection, floodfilling, and door-classification modules.

SESYD achieves the highest navigational completeness, nearing a

perfect score of 0.98 (Table 2). This strong connectivity stems from

the dataset’s simpler and more structured layouts, which reduce

Table 2: Navigational Completeness and Exit Reachability

Dataset Navigational
Completeness

Exit
Reachability

Main Sources of
Disconnection

Site A 0.93 ± 0.02 0.90 ± 0.03

Missed Doors,

Partial Floodfill

Site B 0.90 ± 0.03 0.86 ± 0.04

High Door Density,

Patch Splits

SESYD 0.98 ± 0.01 0.96 ± 0.01

Occasional

Door Misdetections

the likelihood of ambiguous boundaries or overlapping door place-

ments. The few disconnections observed (roughly 2%) primarily

arise from missed doors, typically when the Faster R-CNN model

fails to detect small or partially occluded doorways.

Site A and Site B both exhibit slightly lower completeness scores,

attributed to their larger, more complex floor plans, and higher

variability in room sizes. In Site A, the average completeness of 0.93

reflects occasional failures in door detection along extremely long

corridors. In some cases, overly conservative floodfilling around

thick walls contributes to incomplete room connectivity. Mean-

while, Site B shows a marginally lower mean completeness (0.90),

which appears tied to its smaller patch sizes and the high density

of doors per patch. When a door is missed in such a confined patch,

entire room clusters risk isolation unless alternative routes exist.

Exit Reachability. Exit reachability, also listed in Table 2, evalu-

ates whether every room node in the final graph can access a desig-

nated exit node. For SESYD, 96% of rooms achieve exit connectivity,

reaffirming the dataset’s relatively simple layouts. By contrast, Site
A and Site B demonstrate a modest drop in exit reachability (0.90

and 0.86, respectively) compared to their overall completeness. This

discrepancy highlights that while many rooms remain intercon-

nected, certain missed or misclassified doors near external bound-

aries can sever paths leading outside. In Site B, doors that appear
only within patch overlaps occasionally go undetected, impeding

the connection between entire interior segments and exit nodes.

Overall, these results confirm that our approach yields high navi-

gational completeness in simpler architectural settings and remains

robust in larger, more complex sites. Nevertheless, improving door

detection accuracy—particularly for edge cases where doors are

partially obscured or conflated with text—could further enhance

connectivity. In the next subsection, we discuss computational effi-

ciency results and explore how the pipeline’s runtime scales with

floor plan size and patch density.

5.2 Computational Efficiency
The runtime performance of the Tesseract is examined by break-

ing down execution times into four modules: (i) Preprocessing and
Segmentation, (ii) Door Detection, (iii) Door Classification, and (iv)
Graph Construction and Optimization. Table 3 summarizes the av-

erage runtimes for each module across our three datasets, along

with the total end-to-end processing time. As shown in Figure 8,

processing time approximately scales linearly with the number

of detected text labels, with large-scale datasets exhibiting higher

runtimes due to increased scene complexity.

Overall Runtime Trends. As shown in Table 3, door detection

and door classification consistently consume the largest portion
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Figure 8: Processing time vs. number of text labels. Sites A &
Site B exhibit linear scaling with floor plan complexity, while
SESYD (right) shows lower runtime due to simpler layouts.

Table 3: Per-Module and Total Average Runtime (in seconds).
Values represent the mean ± standard deviation across the
patches in each dataset.

Module Site A Site B SESYD
Preprocessing

Segmentation
9.8 ± 1.7 12.1 ± 2.3 6.2 ± 1.3

Door

Detection
36.2 ± 3.8 40.5 ± 4.7 30.7 ± 2.6

Door

Classification
22.6 ± 2.6 25.1 ± 2.9 16.4 ± 2.2

Graph Const.

Optimization
13.7 ± 2.0 15.7 ± 3.1 10.2 ± 1.3

Total 82.3 ± 10.1 93.4 ± 9.9 63.5 ± 5.8

Table 4: Impact of Contrast Enhancement on Text Merg-
ing. Values represent the average number of bounding-box
merges needed per patch before and after preprocessing.

Dataset Preprocessing Off Preprocessing On Reduction %
Site A 27.2 ± 3.5 4.1 ± 1.1 85%

Site B 19.8 ± 2.8 3.6 ± 1.0 82%

SESYD 12.3 ± 1.7 1.9 ± 0.6 85%

of processing time, especially in Site B, which features numerous

smaller regions and a high density of doorways. Here, detecting

and subsequently classifying every door can account for more than

half of the total runtime. By contrast, SESYD benefits from fewer

rooms per patch, reducing the time spent on both bounding-box

generation and classification.

Preprocessing and Segmentation. While preprocessing (resolution

normalization and contrast enhancement) costs relatively little time,

it substantially reduces fragmented text detections in subsequent

steps. Table 4 illustrates how increasing contrast lowers the average

number of text bounding-boxmerges by over 80% across all datasets,

thereby accelerating downstream text recognition.

For segmentation, floodfilling remains efficient even in Site A and

Site B. Most segmentation issues stem from structural complexities

like auditorium seating, rather than wall thickness per se. These

obstacles can occasionally lead to partial floodfills, with potential

ramifications for connectivity if not rectified later in the system.

Door Detection and Classification. In larger-scale floor plans, door
detection occupies between 30 to 40 seconds on average, reflecting

the time spent identifying bounding boxes for a high volume of

Table 5: Node and Edge Counts Before and After Pruning
(Mean ± SD). Reduction % is the proportion of nodes/edges
removed relative to the original graph.

Data Nodes Edges Node
Red %

Edge
Red %Before After Before After

Site A 2088 ± 280 459 ± 72 5820 ± 344 1512 ± 98 78% 74%

Site B 1221 ± 190 420 ± 58 4230 ± 261 1144 ± 85 66% 73%

SESYD 85 ± 16 52 ± 10 210 ± 30 136 ± 18 39% 35%

potential door candidates. The subsequent door classification step

entails examining pixel-level context (room vs. corridor vs. outdoor)

for each bounding box, and hence dominates overall runtime in

datasets with many closely spaced doors. For instance, Site B ex-

hibits particularly prolonged classification times (25.1±2.9 seconds),

as multiple small patches with dense door placements necessitate

repeated context checks.

Graph Construction and Optimization. Constructing the graph
by linking room, corridor, door, and exit nodes is relatively effi-

cient, averaging about 10–15 seconds in total across all datasets.

Once complete, graph optimization prunes redundant edges and

calculates shortest paths to solidify connectivity. Though this final

phase is shorter in duration (roughly 10–20% of total runtime), it

yields important benefits: consolidated node sets and streamlined

edge topologies facilitate more efficient routing queries during

subsequent use cases.

Overall, the Tesseract remains computationally viable for both

large-scale and smaller datasets, maintaining an approximate end-

to-end runtime under two minutes per patch even in the most

complex scenarios. The next subsection (Section 5.3) discusses how

these constructed and pruned graphs manifest in practice, high-

lighting node/edge distributions and the corresponding storage

benefits of removing extraneous connections.

5.3 Graph Structure and Pruning Effectiveness
As noted in Section 5.2, graph construction and optimization ac-

count for only a small share of runtime but are essential for produc-

ing compact, navigable indoor graphs. This subsection highlights

the achieved node and edge reductions from pruning and the corre-

sponding storage savings in the final JSON output.

Node and Edge Counts Before & After Pruning. Following door

classification, each patch is initially represented by a fully connected

graph encompassing all discovered rooms, corridors, outdoor nodes,

and doors. Table 5 illustrates how optimization removes redundant

edges and, in some cases, merges nodes representing near-identical

positions in the corridor or hallways. As a result, the final graph

experiences a considerable reduction in overall complexity without

impairing navigational completeness (see Section 5.1).

Notably, Site A and Site B exhibit more substantial edge reduc-

tions (over 74%) and node reduction (over 78%), largely due to over-

lapping corridor nodes and door connections that can be pruned

without impacting reachability. Although SESYD benefits less dra-

matically from pruning (around 35% of edges removed and around

39% of nodes removed), it still sees modest simplification gains

owing to its smaller scale and lower corridor redundancy. Crucially,

none of these modifications degrade navigational completeness:
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Table 6: Average JSON File Size Before and After Pruning.

Dataset Before
Pruning (KB)

After
Pruning (KB)

Reduction
%

Site A 889 ± 85 218 ± 28 75%

Site B 905 ± 79 225 ± 25 71%

SESYD 345 ± 40 45 ± 11 87%

the system ensures that every valid route from a room to another

(or to an exit) persists post-optimization.

Final Graph Storage Footprint. To quantify how these structural

reductions translate into file size savings, we store each patch’s

graph in a JSON-based format and measure its size before and

after pruning. Table 6 shows that all datasets see meaningful file-

size reductions, reflecting the removal of extraneous edges and

consolidated node representations.

In Site A, broader corridors and dense door connectivity result in
an average file-size reduction of nearly 75%. For Site B, finer patch
segmentation leads to the removal of many corridor-to-door edges,

reducing storage by 71%. In SESYD, with fewer true room nodes

and edges, the final graph is on average 87% smaller.

Taken together, these results underscore the effectiveness of

pruning for eliminating needless complexity in corridor-dense or

door-rich environments, facilitating both storage efficiency and ease
of navigation. Notably, the Tesseract’s design ensures that no critical

route or exit pathway is removed during optimization, preserving

the high connectivity reported in Section 5.1. Consequently, the

final graphs remainwell-suited for tasks like evacuation routing and

indoor wayfinding, while maintaining compact file representations

that can be rapidly loaded or transmitted. In the next section, we

analyze selected floor plans visually and discuss the qualitative

aspects of the pruned graphs.

5.4 Geometric Fidelity
Although the focus of our evaluation primarily centers on navigabil-

ity and structural completeness, certain applications (e.g., detailed

evacuation planning or resource allocation) may demand that the

final graph accurately reflects real-world distances. In such cases, we
measure geometric fidelity by comparing the Euclidean distances

directly derived from the floor plan with those computed along the

shortest paths in the pruned graph.

Table 7 summarizes the mean and standard deviation of distance

ratios for each dataset. These values are derived from at least 12-20

representative room pairs per floor plan in Site A, Site B, and SESYD.
Overall, SESYD demonstrates the smallest deviation from unity,

with a mean ratio of 0.96 and a maximum deviation of 0.13. This

near-ideal performance is attributable to the dataset’s simpler lay-

outs and smaller scale, where corridors are typically straight, and

doors closely align with the conceptual “centers” of edges.

Conversely, Site B shows greater variance, with a maximum de-

viation of 0.28. This is primarily due to corridor sampling and door

classification in areas with complex hallways or irregular rooms. In

such cases, the shortest pathwithin the graph sometimesmarginally

overestimates or underestimates true Euclidean distances, reflecting

a partial “shortcut” effect or unavoidable detour.

Despite these deviations, most room pairs in both large-scale

(Site A, Site B) and smaller-scale (SESYD) floor plans exhibit distance

Table 7: Average Distance Ratios and Their Standard Devi-
ations Across Datasets. Ratios close to 1.0 reflect minimal
distortion between floor plan and graph-based distances.

Dataset Mean 𝜌 Std. Dev. Max. Deviation
Site A 0.94 0.07 0.22

Site B 0.92 0.10 0.28

SESYD 0.96 0.04 0.13

ratios above 0.90. For navigation and planning purposes, this level of

geometric fidelity is typically sufficient, particularly if the primary

objective is to ensure connectivity rather than precise distance

measurement. Where more accurate distance estimates are critical

(e.g., evacuation route timing), additional refinements—such as

higher-resolution corridor sampling or post-processing adjustments

to edge weights—can improve alignment between real-world and

graph-based distances.

Thus, while geometric fidelity may be optional in many practi-

cal settings, the results demonstrate that the Tesseract preserves
distances reasonably well, especially in less convoluted architec-

tural scenarios. Future work could incorporate room shape priors

or multi-seed sampling tailored to hallway geometry to further

narrow the gap between graph-based and true Euclidean distances.

5.5 Discussion
Quantitative results demonstrate that Tesseract consistently achieves
high navigational completeness and substantial graph simplifica-

tion across diverse architectural layouts. In both large-scale univer-

sity buildings and compact, structured environments, the system

maintains over 90% inter-room connectivity and reduces redundant

graph elements by up to 78% in nodes and 74% in edges. These

results validate its scalability and adaptability, showing that it gen-

eralizes well to varying levels of complexity without compromising

performance.

Door detection and classification are the most critical factors

in maintaining graph connectivity. Missed or misclassified doors,

especially in dense areas with frequent transitions, can create iso-

lated subgraphs or limit exit access. Structural complexities such as

irregular walls, embedded fixtures, or narrow junctions may also

reduce segmentation accuracy, causing incomplete boundaries or

adjacency errors. Enhancing these modules with context-aware de-

tection or geometric reasoning could improve robustness. Overall,

however, the system remains highly reliable, offering a practical

solution for large-scale indoor map generation and navigation.

6 Conclusion
This paper introduced Tesseract, a novel deployable system that

constructs navigable indoor graphs solely from low-semantic static

floor plan images. Tesseract circumvents the need for advanced sen-

sors or specialized modeling software. By combining deep learning

techniques for text and door detection with our intelligent floodfill-

based floor plan segmentation, our system extracts semantically

meaningful nodes and edges, culminating in a graph representation

optimized through shortest-path pruning.
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