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ABSTRACT In our research, we address the problem of coordination and planning in heterogeneous
multi-robot systems for missions that consist of spatially localized tasks. Conventionally, this problem has
been framed as a task allocation problem that maps tasks to robots. However, all previous work assumes that
tasks are atomic procedures. In this work, we relax this assumption and adopt a non-atomic model of tasks
that enables robots to accomplish mission tasks incrementally over disjoint periods, precisely to account
for the possibility of having a task serviced by numerous individual contributions over time. We propose
a cooperative, load-balancing task allocation and scheduling algorithm based on sequential single-item
auctions (CoLoSSI) that explicitly considers the non-atomicity of tasks, promotes synergies between agents,
and enables cooperation while maintaining computational tractability. We also propose a fully distributed
variant of CoLoSSI that tackles sparse, communication-restricted scenarios. Computational and simulation
results confirm the efficacy of the proposed approaches for generating good-quality mission plans with low
computational effort.

INDEX TERMS Cooperative robotics, distributed algorithms, load balancing, multi-robot systems, non-
atomic task model, search and rescue robotics, sequential single-item auctions, task allocation.

I. INTRODUCTION
Mobile multi-robot teams have emerged as versatile, adapt-
able, and robust solutions for a variety of real-world
applications, as evidenced by their growing prominence in
areas such as search and rescue, environmental monitoring,
and area patrolling [1]. These applications often involve
time-extended missions over large areas, where the efficient
coordination of heterogeneous teams (robots with diverse
sensory-motor capabilities) is essential. Such teams, consist-
ing of robots with different capabilities, must work together
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efficiently to avoid conflicts, minimize redundant efforts, and
effectively achieve their objectives.

In large-scale operations, the efficiency and success of
multi-robot teams rely heavily on their ability to handle two
primary challenges: optimal task distribution andmaintaining
effective communication in potentially restricted environ-
ments. These operations typically demand extensive area
coverage, prolonged mission duration, and the management
of complex task distributions. The core challenge lies in
the distribution of tasks among the team members to
ensure the overall mission is completed in the shortest
time possible, referred to as minimizing the makespan
(i.e., time needed for mission completion). This need for
efficient task allocation is universal in connectivity-restricted
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or unrestricted environments. However, in communication-
restricted settings, there is a heightened risk of robots
losing contact with their teammates by moving out of the
communication zone, leading to redundant task allocation
and unnecessary navigation. Consequently, this results in a
significant increase in the overall makespan of the mission.
As a result, maintaining connectivity within the team and
forming larger, more cohesive groups becomes crucial for
productive and efficient mission execution.

To address these challenges effectively, it is crucial
to understand and optimize the fundamental problem of
Multi-Robot Task Allocation (MRTA) in these complex
environments. MRTA is a fundamental problem in multi-
robot systems, focusing on efficiently assigning tasks to
robots in a team to optimize overall performance. MRTA
algorithms aim to distribute tasks among robots while
considering various factors such as robot capabilities, task
requirements, and environmental constraints.

This paper explores the coordination of mobile multi-robot
teams equipped with range-limited radio interfaces for
extended missions across expansive regions. Emphasizing
teams of autonomous robots with diverse capabilities,
we construct a mobile multi-hop wireless network essential
for intra-team communication, particularly where dedicated
infrastructure is absent and disconnection risks are high.
Our focus is on optimizing makespan for spatially dis-
tributed, non-atomic tasks through a task allocation and
scheduling model that assigns tasks considering limited
communication, where robots rely on partial informa-
tion. Existing coordination schemes, both implicit [2] and
explicit [3], usually depend on robust communication chan-
nels, yet falter in large-scale operations like post-disaster
scenarios with compromised infrastructure. Addressing this,
we propose the CoLoSSI algorithm, a cooperative, load-
balancing task allocation and scheduling method grounded
in the concept of sequential single-item auctions. CoLoSSI
advances the traditional auction model [4] by providing
high-quality solutions efficiently, crucial for teamwork and
reduced computational demands [5]. Our approach not
only manages the distribution of tasks effectively but
also maintains operational effectiveness, ensuring that the
multi-robot teams’ coordination is resilient to the commu-
nication challenges inherent in large-scale, unpredictable
environments.

The algorithm is a variant of the classical sequential
single-item auction approach [4]; therefore, it inherits its
simplicity and low computational cost and also provides good
quality solutions [5].

We implement CoLoSSI in a closed-loop, fully distributed
manner, with periodic recomputation of mission plans.
Robots within the communication range collaborate to
develop joint plans using CoLoSSI. In this manner, they con-
tinuously update each other over the wireless network as they
execute their tasks. This iterative planning process adapts to
environmental uncertainties and unexpected developments.

This is a crucial feature in dynamic scenarios that mimic
real-world applications such as environmental monitoring or
post-disaster response.

Moreover, we identify and address specific challenges
in communication-restricted environments by introducing
extensions to the CoLoSSI algorithm. These extensions
focus on generating mission plans that optimize wireless
networking conditions by considering factors like con-
nectivity, obstacle presence, and spatiotemporal dynamics.
The objective is to increase the team’s performance by
improving network connectivity. Our connectivity-aware
variant, Co-CoLoSSI, integrates these considerations into
the auction-based algorithm, prioritizing communication
efficiency during plan execution.

Our evaluation demonstrates that CoLoSSI yields
high-quality mission plans with reduced computational
requirements compared to optimal solutions obtained using
the CPLEX mathematical solver. Additionally, simulations
of Co-CoLoSSI in communication-restricted environments
show that enhanced communication capabilities significantly
improve decision-making quality. Co-CoLoSSI proves
particularly useful when there is no reliable communica-
tion infrastructure or when communication patterns are
unpredictable. Its main advantages are its computational
efficiency, dynamic adaptability, and practical use in real-
world applications.

Distinguishing our work from prior research, we address a
critical aspect ofMRTA that has been relatively unexplored in
the studies mentioned above: the impact of network connec-
tivity on team performance. Unlike approaches that impose
specific connectivity requirements or rely on dedicated relay
agents [6], we introduce computationally efficient strategies
to enhance communication and team coordination. Recent
studies by [3], [7], and [8] have demonstrated that the
performance of auction algorithms can significantly degrade
under varying communication qualities within a team. Our
work aims to mitigate this performance degradation through
innovative strategies that improve network connectivity
throughout the mission.

These strategies range from a straightforward yet impact-
ful technique based on mission replanning intervals to
more sophisticated approaches centered around manag-
ing spatiotemporal relations within the team. Importantly,
as demonstrated with our CoLoSSI approach, these strategies
can seamlessly integrate into any baseline auction-based
decentralized method. This adaptability ensures that our
contributions can be widely applied across various MRTA
scenarios, further advancing the field’s capabilities in
real-world applications where communication constraints are
a significant concern.

This paper introduces several novel contributions to multi-
robot systems, particularly in enhancing communication
and coordination within multi-robot teams operating in
communication-restricted environments. The novelties intro-
duced in this work are as follows:
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• Introduction and validation of the CoLoSSI algorithm
with a significantly larger dataset, showcasing its
effectiveness in coordinating non-atomic tasks among
multi-robot teams.

• Proposal of various strategies aimed at improving
inter-agent communication and facilitating the forma-
tion of larger collectives, which help decrease the overall
mission makespan.

• Extensive evaluation of strategies to enhance communi-
cation within robot teams, including exploring different
replanning intervals and meetup tactics to optimize team
coordination.

• Enhancement of the CoLoSSI algorithm with the Co-
CoLoSSI algorithm, incorporating rigorously tested
strategies to improve performance in communication-
restricted settings.

Following these advancements, it is pertinent to mention that
a preliminary version of the CoLoSSI algorithm was pre-
sented in previous work [9]. The current paper significantly
extends upon this foundation by conducting experiments on
a larger number of problem instances and those of higher
dimensionality. An in-depth explanation of the CoLoSSI
algorithm and a thorough evaluation of the model in
various communication-restricted scenarios are provided.
This work also includes a comparative analysis with the
state-of-the-art sequential single-item auctioning algorithm,
thereby demonstrating the adaptability and robustness of our
proposed algorithms under dynamic conditions.

Following this introduction, Section II reviews related
work, setting the context for our research. Section III
presents a model for cooperative mission planning with
heterogeneous teams, elaborating on the spatial task allo-
cation and scheduling problem in heterogeneous mobile
multi-robot teams (STASP-HMR). In Section IV, we intro-
duce CoLoSSI, our cooperative and load-balancing task allo-
cation and scheduling solution, utilizing sequential single-
item auctions. Section V discusses distributed planning in
communication-constrained environments, highlighting the
challenges and necessities of such environments. Section VI
introduces Co-CoLoSSI, a connectivity-aware variant of
our algorithm tailored for communication-restricted environ-
ments. Section VII presents the empirical setup for evaluating
the proposed algorithms. The results and discussion about
CoLoSSI and Co-CoLoSSI, demonstrating their effective-
ness and efficiency, are detailed in Section VIII. Finally,
Section IX concludes the paper, summarizing our findings
and contributions.

To support reproducibility and facilitate further research,
the code used for this study is available in a GitHub repos-
itory: https://github.com/IshaqAnsari2001/CoLoSSI/tree/
main.

II. RELATED WORK
In the context of coordination in the robotics domain, MRTA
problems map robots to tasks with different assumptions,
restrictions, and domain-dependent issues. In this section,

we first discuss the MRTA literature in scenarios where net-
work communication is taken for granted. In these works, the
primary focus is on issues such as computational scalability,
the nature of the tasks, and the task methodology utilized to
make the decisions. Next, we discuss the approaches with a
particular focus on the communication aspects of multi-robot
missions. Table 1 summarizes the most related approaches to
our work.

A. MULTI-ROBOT TASK ALLOCATION
A foundational classification of MRTA works was intro-
duced in [10], establishing connections with mathematical
optimization models like vehicle routing, assignment, and set
problems. Building upon this work, [11] expanded the tax-
onomy to encompass interconnected utilities and constraints,
while [12] categorized constraints on the schedules of the
robots.

These classifications have enabled the formalization of
MRTA scenarios and brought to light the NP-hard nature
of MRTA problems. Consequently, devising computationally
feasible solution approaches with performance guarantees
proves inherently challenging in realistically complex sce-
narios. Several MRTA studies have proposed distributed
approaches to address scalability concerns and cooperative
game theory [19]. Among these, market-based methods [23],
[24] leverage negotiation techniques such as auctions and
have demonstrated success across various domains [14], [25].
Recently, deep neural networks have revolutionized several
domains, including medical imaging [26], [27], [28], [29],
[30], signal processing [31], [32], [33], [34], drug discov-
ery [35], [36], [37], and machine vision [38]. Subsequently,
graph neural networks have also been employed in literature
for decentralized multi-robot goal assignment [18].

In this work, we propose a market-based method for the
spatial task allocation and scheduling problem in hetero-
geneous multi-robot teams, or STASP-HMR in short [39].
According to the initial categorization of [10], the STASP-
HMR covers both single-task robots (ST) and multi-task
robots (MT), and considers single-robot tasks (SR), for a
time-extended assignment (TA). According to the extended
taxonomies, our problem also fits the class of MRTA
with cross-schedule dependencies [11] and MRTA with
precedence constraints [12].

It is noteworthy that all previous market-based MRTA
approaches, to the best of our knowledge, have been formu-
lated under the restrictive assumption that tasks are atomic
procedures [5], [13], [14], [17], [20], [24], [40], necessitating
uninterrupted agent effort for task completion. Market-
based approaches, particularly auction-based approaches,
have recently been shown to be effective in scenarios atomic
tasks [14], [41], such as pick-and-deliver [42], [43] sensing
tasks [15], and tasks that are announced stochastically [16].
These approaches, however, cannot be directly used to tackle
the STASP-HMR without compromising their computational
efficiency: accounting for non-atomic tasks would require
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TABLE 1. Summary of related MRTA approaches.

decomposing each task into a bundle of atomic tasks for the
agents to bid on, causing an immense increase in the number
of tasks available for bidding, and a significant impact on
the tractability of the computation. Our approach explicitly
considers the non-atomic nature of tasks and integrates
fractional task bidding into the auctioning process. As a
result, it enables the calculation of - potentially more effective
- solutions where tasks are completed incrementally over
separate time intervals, allowing different agents to contribute
effort during these periods.

B. MULTI-ROBOT TASK ALLOCATION IN
COMMUNICATION-RESTRICTED ENVIRONMENTS
The majority of research in MRTA assumes the presence
of a reliable communication network [8], [24]. Other works
have addressed communication challenges in fully connected
topologies. For instance, in [21], authors propose a variation
of the Consensus-Based Bundle Algorithm (CBBA) [13]
that takes into account bandwidth limitations and message
collisions. Assuming a fully connected network, they propose
a modified medium-access layer protocol that improves
the utilization of the shared medium based on the nature
of the messages sent by the task allocation algorithm.
In [15], an information sensing mission employing UAVs
takes advantage of stable wireless connections provided by
prevalent urban networks like 5G and 6G. Their approach
aims to enhance data exchange efficiency through periodic
task auctions while managing the transmission costs asso-
ciated with sensing tasks. Only a limited number of studies
have explored situations in which the network topology
undergoes continuous changes, affecting the potential for
communication among agents [3], [6]. It is noteworthy that
the majority of works in this domain predominantly restrict

their treatment of communication issues to evaluationwithout
actively seeking to enhance the network topology to address
these challenges, e.g., [5].

Most MRTA works addressing challenges in communi-
cation-restricted environments generally adopt one of two
distinct approaches. The first prevalent strategy is the
assignment of dedicated network provisioning tasks to
a subset of agents, as observed in various studies such
as [44] and [45]. A second approach involves imposing
rigid communication constraints, such as maintaining close
proximity among robots. Examples include establishing
permanent communication paths between a base station and a
group of robots [46] and ensuring global connectivity among
the robots [47].

Both approaches to addressing communication challenges
in restricted environments come with distinct drawbacks.
The strategy involving dedicated network provisioning tasks
can lead to resource inefficiencies, particularly when the
number of available robots is limited [48]. On the other
hand, approaches imposing rigid communication constraints,
such as maintaining close proximity at all times, sacrifice
adaptability. These constraints limit flexibility in mission
execution, impacting their overall effectiveness in dynamic
and complex environments. Balancing these drawbacks is
crucial when devising strategies for effective communication
in robotic scenarios.

C. GLOBAL PERSPECTIVES AND RECENT ADVANCEMENTS
IN MRTA
The field of MRTA has seen significant advancements
globally, with researchers from various countries contributing
to its evolution and demonstrating its impact across different
sectors. In China, [49] developed a large-scale 3D printing
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system using multiple collaborative robots. Their printer
task-optimized scheduling algorithm and robot interference
avoidance strategy resulted in an efficiency improvement
exceeding 73% compared to general printing methods, show-
casing the potential of MRTA in advanced manufacturing.
In Japan, [50] proposed hybrid evolutionary algorithms to
optimize layouts for multi-robot cellular manufacturing sys-
tems. Their work, which included cooperative tasks among
robots, evaluated layout area, operation time, and robot
manipulability as key design criteria. The study found that
a hybrid genetic algorithm with particle swarm optimization
(GA+PSO) performed best, demonstrating the effectiveness
of MRTA in complex industrial scenarios. Research from
Korea by [51] focused on agricultural applications, develop-
ing a multi-robot tractor system for fieldwork. Their system,
which could form various spatial patterns (I, V, orW), showed
impressive efficiency improvements, particularly in large
fields. For instance, with seven robots using the W-pattern,
efficiency reached 84.9% for fields 500 meters in length,
highlighting MRTA’s potential to revolutionize agricultural
practices.

These studies underscore the impact of MRTA innova-
tions on technological progress across different sectors and
geographical regions. The choice of market-based methods
for MRTA, as employed in our study and several others [5],
[13], [17], is based on their proven effectiveness and scal-
ability. Market-based approaches, particularly auction-based
methods, have shown promising results in various scenarios.
For example, [15] applied these techniques to sensing tasks,
while [16] explored their effectiveness in scenarios where
tasks are announced stochastically. Recent years have wit-
nessed a surge in MRTA research, with notable contributions
expanding the field’s scope and capabilities. [18] employed
graph neural networks for decentralized multi-robot goal
assignment, demonstrating the potential of advancedmachine
learning techniques in MRTA. Reference [19] explored
game-theory-based algorithms for multi-objective MRTA,
while [22] focused on distributed optimization techniques for
scenarios with restricted communication range.

From a global perspective, MRTA research has become
increasingly collaborative and diverse. This is evident from
the variety of approaches and applications seen in recent
literature, spanning from manufacturing and agriculture to
complex optimization problems. Our work builds upon
these foundations, addressing the specific challenges of the
STASP-HMR while contributing to the broader landscape of
MRTA innovation.

III. A MODEL FOR COOPERATIVE MISSION PLANNING
WITH HETEROGENEOUS TEAMS
In this section, we briefly describe the spatial task allocation
and scheduling problem in heterogeneous mobile multi-robot
teams, or STASP-HMR in short. The STASP-HMR has
been formally introduced in our previous work [39]. For
completeness’ sake, we include some definitions here.

A. DEFINITIONS AND TERMINOLOGY
We assume the mission has been decomposed into a set
T of spatially distributed, location-dependent tasks. A task
corresponds to the execution of a particular action at a
specific location (or portion) of the environment. Tasks can
be non-atomic, implying that any task can be accomplished
incrementally over separate time periods when different
agents devote a certain effort. Tasks in T are not necessarily
spatially disjoint, and we assume there are no temporal
dependencies related to the tasks (e.g., execution time-
windows, or deadlines).

A set of resources A (mobile agents) is available for the
mission. Each agent can perform different tasks to some
extent (including the case where an agent is not suited to deal
with a task) and with an agent-specific time efficiency.

The goal ofmission planning consists in completing all the
tasks while minimizing the completion time (e.g., makespan).
To this end, three sub-problems must be solved:
• Agent task allocation: assign all tasks to specific agents
within the team, based on their current status and their
efficiency in dealing with the tasks;

• Task routing: for each agent, define the sequence for
dealing with the assigned tasks, and, therefore, for
moving from one spatial location to another;

• Time scheduling: appoint the duration of the services
provided to each one of the selected tasks by each agent.

Note that minimizing the makespan requires these
sub-problems to be jointly solved.

The diversity in the agent team A is captured through task
efficiency models that, given a ∈ A and i ∈ T , define
the efficiency (i.e., amount of work accomplished over time)
with which agent a services task i. The intuition is that any
progress on the completion of a task depends on the time
spent on it, in particular, we consider linear task efficiency
relations. For a given task i, we say that agent a is more
efficient than agent b if, devoting the same amount of time
to task i, a would complete more of i’s workload.

We consider time uniformly discretized into a sequence of
intervals of length 1T . Henceforth, all decisions concerning
time are discrete: an agent can only spend an integral
number of time steps servicing a task. We assume that task
efficiency models are known for each agent in A, and remain
constant during a mission. Efficiency models are represented
by performance functions ϕk (i) that precisely indicate the
decrease in workload of task i ∈ T when agent k ∈ A
executes it for one 1T time interval. We also assume that
the efficiency models are additive: when agents A′ ⊆ A
work simultaneously on the same task i, the decrease in
workload of i is equal to

∑
k∈A′ ϕk (i). Additive and linear

efficiency models are computationally simple and effectively
capture the nature of various robotic tasks such as search and
coverage [48].

Finally, the completion map C : T 7→ [0, 1] is used as a
mean of expressing the fractional residual workload of each
task. This concept is particularly relevant in staged planning
scenarios to identify the current completion level of tasks
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whose workload has been partially addressed in previous
planning stages. For instance, a value of C(i) = 0 indicates
that task i has already been completed in the past. Therefore
no further effort from the agents is required. If an agent
attempts to further deal with a completed task, it will amount
to a waste of time and resources. Servicing p · 100 percent of
the workload of task i decreases its required completion C(i)
by p.

B. PROBLEM FORMULATION
Based on the above concepts and assumptions, the spatial
task allocation and scheduling problems in heterogeneous
multi-robot teams, or STASP-HMR, in short, is formally
stated as follows. Given a set A of heterogeneous agents,
characterized by their task performance functions ϕ, a set
of assignable tasks T , a set of initially accessible tasks, the
STASP-HMR consists in determining a mission plan – joint
plans for the activities of the agents in the environment – that
completes all tasks and minimizes the makespan.

A solution to the STASP-HMR is a mission plan that is
represented by a set of tasks ak ; task routes pk , and schedules
sk for each agent k in team A. We denote a mission plan as
P = {Pk | k ∈ A}, where Pk = < ak , pk , sk > denotes the
plan (i.e., assigned tasks, route, and schedule) corresponding
to agent k . The sets ak ⊆ T indicate the tasks that are
assigned to agent k , with

⋃
k∈A ak = T . Each route pk is

the sequencing of tasks ak . Schedules skak 7→ N are time
assignments that define the total time each of the selected
tasks will receive. All routes pk must start with a task that
belongs to the set T0 of initially accessible tasks (e.g., the
locations of the mission’s control centers).

The STASP-HMR can be formalized as a Mixed-Integer
Linear Program (MILP). Interested readers may find more
details on the MILP formulation in [39].

IV. COLOSSI: COOPERATIVE AND LOAD-BALANCING
TASK ALLOCATION AND SCHEDULING BASED USING
SEQUENTIAL SINGLE-ITEM AUCTIONS
CoLoSSI [9] implements sequential single-item auctions.
The algorithm randomly selects one agent who plays the
auctioneer role while the other agents are the bidders.
In practice, the same agent can play the auctioneer and
bidder simultaneously, or the auctioneer could be a central
entity. Although it can be a weak point, the auctioneer
makes communication among robots easier and keeps
track of all individual plans and the completion level of
tasks. Additionally, auction methods distribute the task of
determining robot bids, as explained below, enabling the
auctioning process to continue even if a robot leaves the
mission or fails to communicate.

When the auction process begins (Algorithm 1), the
auctioneer broadcasts all available tasks and the completion
map to all participating agents. Then, the initial phase of
CoLoSSI, named Initial Task Allocation and Scheduling
(ITAS), occurs in a distributed manner. Each agent inde-
pendently computes the bid value for each task (using the

function GenerateWeightedBid) and submits its minimum
bid to the auctioneer (using the function SendBid). The
auctioneer then assigns the task with the minimum bid to
the corresponding agent and communicates its decision to the
agents. Agents use the function ReceiveWinner to learn about
the round winner. If multiple equivalent minimum bids are
submitted, ties are broken randomly to determine the round
winner.

When an agent is assigned a task, it calculates the most
efficient route to reach it and includes it in its plan using the
function UpdatePlan. This step is necessary because tasks
are located in different areas, and the agent may need to go
through other task locations to get to the assigned task. Once
the optimal route is determined, all tasks are added to the end
of the plan, withminimal effort assigned to them. The updated
plan is communicated to the auctioneer, using the function
Notify, who distributes the updated state of the mission to all
other agents (function Consensus).

After each round, at least one task is assigned to an agent,
and After |T | rounds, all the tasks have been assigned to
at least one agent and are scheduled for completion. During
the auction process, the auctioneer maintains a copy of the
completion map to track the completion of the tasks as
the rounds are performed. The auctioneer also distributes
this knowledge of the completion map to all the agents
participating in the auction after each round using the
function UpdateCompletion.
During the auctions, the agents determine the schedule to

allow them to perform the tasks. They allocate the maximal
time to complete the residual workload for the won tasks.
As mentioned above, agents perform minimal work for tasks
that belong to the path to a task that has been won. It is
important to note that in some applications, this minimal
amount of work could still be helpful for the mission. For
instance, in search and rescue missions, the agents could keep
searching for the target while traveling to the location of their
assigned search tasks.

The bidding algorithm of CoLoSSI takes into account
multiple factors. Let C j be the completion map at the start
of the j-th auction round. Let a′k be the set of tasks awarded
to agent k so far (a′k ⊆ ak ). The bid that agent k ∈ A computes
for task i ∈ T is a linear combination of the following factors.
• Expected time required from the agent to complete the
residual workload of the task: C j(i)/ϕk (i)

• The number of tasks the agent has been awarded to the
agent: |a′k |.

• The time required to reach the task by traversing through
other tasks (i.e., number of traversal tasks required),
denoted as dist(pk , i).

• The duration of the agent’s current plan:
∑

i∈ak sk (i).

bid(i) = k1C j(i)/ϕk (i)+ k2|a′k |

+ k3dist(pk , i)+ k4
∑

i∈ak
sk (i)

where k1, k2, k3 and k4 ∈ R represent the weights of each
factor in the bidding function (the higher the value, the more
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FIGURE 1. This is an illustration of a potential allocation of tasks
between two agents. The grid on the left shows which tasks have been
allocated to which agent and the graph on the right indicates the number
of time units each agent will spend on each task.

importance is given to the factor). Although all the factors in
the bidding function play a crucial role in determining each
task’s winner, some factors should havemore influence on the
bidding than others. In our experiments, the order of priority
of these factors is as follows:

k1 ≥ k2 ≥ k3 ≥ k4 (1)

Algorithm 1 ITAS on Agent k
Input: T , A, C , ϕ, P
Output: Mission plan P

1: CP ← C
2: while not MissionComplete(CP ) do
3: for i ∈ T do
4: bik ← GenerateWeightedBid(i, k)
5: end for
6: t ← argmini∈T bik
7: SendBid ((t, btk ))
8: (r, t)← ReceiveWinner()
9: if r == k then
10: Pk ← UpdatePlan(t, k)
11: Notify(Pk )
12: else
13: P ← Consensus()
14: end if
15: CP ← UpdateCompletion(P, ϕ)
16: end while

A. IMPROVING AGENTS’ SCHEDULES BY DISCOVERING
COOPERATIVE ACTIONS
Once the sequential auctions are completed, the resulting
plans can have overlapping actions that could be leveraged
to boost cooperation and synergies among the agents. For
instance, consider the allocation represented by Fig. 1. In this
case, agent 1 won the task located in the center of the grid
during the bidding. Later, agent 2 won a task located in the

FIGURE 2. After the initial makespan generation, it is still possible that
tasks are allocated more time than needed due to future agent traversals.
These tasks (e.g. task circled in red) are potential opportunities for
collaboration between agents.

FIGURE 3. Example of final mission plan after workload balancing. Note
the redistribution of the tasks and time units among the agents.

bottom-right of the grid that involved a traversal through the
central task. During that traversal, the second agent spends
minimal time on the central task that could count toward
completion. This means that the first agent’s preliminary time
commitment to the central task did not account for the work
the second agent could do over that task during the traversal.

This issue is rectified during the second stage of CoLoSSI,
named Iterative Collaborative Refinement (ICR). During this
stage, the agent with the largest makespan iterates over its
schedule to find tasks that were assigned more time units
than necessary. The agent uses the auctioneer’s knowledge
of the completion map and the plans of the other agents to
determine which tasks are already being contributed to by
other agents. From these tasks, if the agent can reduce their
time commitment without hampering the completion of the
task, then the extra time units are removed from the agent’s
schedule, reducing their overall makespan. It is important to
note that if the removal of time units will result in the task
being left incomplete, then no changes are made to the agent’s
time commitment to the task. The process repeats until the
maximum makespan remains unchanged. An example of this
is shown in Fig. 2.
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Algorithm 2 ICR on Agent k
Input: T , A, C , ϕ, P
Output: Updated mission plan P

1: T , r ← MaximumMakespanAgent(P)
2: Tprev←∞
3: CP ← UpdateCompletion(P, ϕ)
4: while T < Tprev do
5: Tprev = T
6: if r == k then
7: Pk ← RefinePlan(k,CP ,P)
8: Notify(Pk )
9: else
10: P ← Consensus()
11: end if
12: T , r ← MaximumMakespanAgent(P)
13: CP ← UpdateCompletion(P, ϕ)
14: end while

Algorithm 3 MBR on Agent k
Input: T , A, C , ϕ, P
Output: Updated mission plan P

1: T , r ← MaximumMakespanAgent(P)
2: Tprev←∞
3: CP ← UpdateCompletion(P, ϕ)
4: while T < Tprev do
5: Tprev = T
6: if r == k then
7: P ← BalancePlan(k,A,C, ϕ,P)
8: Notify(P)
9: else
10: P ← Consensus()
11: end if
12: CP ← UpdateCompletion(P, ϕ)
13: T , r ← MaximumMakespanAgent(P)
14: end while

B. ACHIEVING LOAD-BALANCING THROUGH TASK
REDISTRIBUTION
While the previous procedure considers the work done by
other agents due to traversals to promote cooperation and
reduce the overall makespan, the resulting plans could still
need to be balanced regarding the workload. As a result, some
agents may end up with considerably lower makespans than
the maximum makespan, thus underutilized.

The third stage of CoLoSSI, named Makespan balancing
and refinement (MBR), is used to re-balance the overall
workload among the agents to reduce the current mission
makespan.

For example, note that Agent 1 in Fig. 2 has the maximal
makespan of 10 time units, while Agent 2 has a makespan
of 6 time units. Thus MBR increases Agent 2’s load while
reducing Agent 1’s to achieve a lower maximal makespan.
This example is shown in Fig. 3.

The load-balancing stage takes the mission plan obtained
in the previous step as input. It revises the agents’ plans as
follows. The agent with the maximum makespan distributes
the workload to other agents to reduce the mission makespan.
This distribution is done by checking if tasks in the maximal
agent’s schedule could be inserted into another agent’s
schedule without increasing the maximum makespan. The
plan of any other agent can be expanded up to a makespan
value strictly less than the mission makespan. New tasks
can be added, or the current time commitment to tasks
already in their plan can be increased. The process repeats
as long as the value of the mission makespan can be
decreased.

V. DISTRIBUTED PLANNING IN
COMMUNICATION-CONSTRAINED ENVIRONMENTS
Potential application domains of the STASP-HMR include
SAR missions that require coordinating multiple agents’
efforts (e.g., transporting items, mapping, and detecting
dangerous substances) over large areas. The nature of
the tasks introduces inherent uncertainties regarding their
execution. Furthermore, the dimensions of the area and
the potential lack of networking infrastructure imply that
network connectivity cannot be taken for granted. Due to
these complicating factors, mission planning cannot usually
be done in an open-loop modality, that is, computing a
mission plan once before the start of the mission and then
letting the agents execute their assigned tasks.

To deal with these issues, we now describe how CoLoSSI
can be fully decentralized. In this implementation, mission
planning is performed iteratively, in a closed-loop modality,
to account for new evidence, leverage the intermittent
network connections, and deal with unexpected issues.

A. SHARED KNOWLEDGE REPRESENTATION
We assume that all agents know all the tasks composing the
mission in advance. We also assume that agents can share
their task efficiency models with other agents. During the
mission, each agent tracks the amount of time it spends
doing each task. This information is described in incremental
updates, which allows reconstructing a local estimation of
the completion map Cm once added up. An incremental
update is a tuple < k, i, tstart , tend > that states that
agent k has provided service to task i from time tstart
to tend .

These updates are generated by the agent that performs
the service and can be shared with other agents. During the
mission, all agents keep a list of the updates it has generated
so far and the updates it has received from other agents.
At any time, an agent can estimate the current completion
of a task i, by estimating the amount of work that task has
received based on the list of incremental updates and the task
efficiency models and subtracting this value from the initial
workload. As a result, each agent has a local estimation of the
completion map.
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B. INFORMATION EXCHANGE
In real-world deployments, data communication is usually
supported by wireless network devices. However, this
communication can be sparse when networked teams operate
over large-scale environments, and the communication range
of the network restricts data exchange.

Based on the shared representation, the final goal is to
exploit the sparse communication interactions among the
agents at most. To this end, a gossip-based mechanism [52]
for information exchange allows that information spreads
among the team. The mechanism is implemented as follows.
During the mission, agents broadcast periodic network
discovery messages that announce their presence to other
agents. Using these messages, each agent maintains a list of
agents from which it has received a message in the recent
time. From this list, and with a certain frequency, the agent
chooses another agent to initiate a synchronization procedure.
This procedure lets each agent merge and synchronize their
list of updates, possibly improving their local perception of
the mission.

C. ADAPTIVE ITERATIVE REPLANNING USING COLOSSI
The adaptive iterative replanning approach is based on
continually acquiring new information about the environment
and the assessment of the current status of the agents. It is
implemented as a re-optimization procedure [53] that solves
a sequence of static problem instances over time.

The iterative replanning allows us to overcome several
challenges. In particular, when the information available
concerning real-world environments are usually incomplete
or imperfect (e.g., due to communication constraints), and
the environment itself is often dynamic. While executing the
tasks, the agents continuously gather new information about
the state of the environment, and the current status of the
agents and the tasks they are executing using the information
exchange strategy described above. The updated informa-
tion is aggregated and considered in the next replanning
iteration in order to make new plans according to changing
situations.

More specifically, the iterative replanning works as
follows. At the start of the mission, all agents initiate a
replanning procedure with their neighbors. Given the com-
munication constraints, several subgroups may be formed.
Each group executes CoLoSSI and computes an initial
mission plan. Each agent decides on a replanning interval
and starts executing its plan. Generally, each agent may
decide on a different replanning interval (i.e., asynchronous
replanning). After the interval of one agent expires, that
agent triggers replanning with its neighbors. At this point,
the corresponding agent sends a message to its neighbors
indicating that a new replanning round should be performed.
Note that a potentially different group of agents initiates
the execution of CoLoSSI, and new plans – and new
replanning intervals – for all the agents in that group are
decided.

1) ADAPTIVE REPLANNING INTERVAL
In this work, we consider two ways the replanning intervals
are defined: periodic and adaptive. With periodic intervals,
replanning occurs at regular, fixed times. Instead, adap-
tive intervals are decided based on the mission’s current
(estimated) completion. Adaptive intervals allow the change
in the frequency of replanning as the mission is being
completed. In particular, in preliminary results, we noticed
that high-frequency replanning is most useful at the initial
stage of the mission but not as much in the latter stages.

Our implementation of adaptive replanning uses intervals
defined as

F(I , T ′) = I + 2
⌊
|T ′|
|T |

⌋
(2)

where I represents the initial replanning interval and T ′
represent the tasks already completed, that is T ′ =
{Cm(i) < ϵ : i ∈ T }.
Using Eq. 2, agents start the mission and replan at small

intervals I . As themission progresses, they gradually increase
their replanning interval based on the number of tasks that
have been completed.

VI. CO-COLOSSI: CONNECTIVITY-AWARE VARIANT FOR
COMMUNICATION-RESTRICTED ENVIRONMENTS
We note that the base approach presented in CoLoSSI does
not have any fixed mechanism for robots to maintain the
groups they have formed nor recruit other robots they come
across while doing their tasks. This means the robots need
not be in the same group after completing one round of
replanning. Each robot regularly looks around to find the
existence of other robots and forms a group with them if
they exist. Suppose a robot comes across another robot that
does not belong to its group. In that case, they exchange
their task efficacymodel andmove on. This primitive mission
planning approach mainly aims to complete missions with no
mechanism to prompt the robots to form and maintain bigger
groups and complete the missions more efficiently.

One of the significant shortcomings of distributed planning
in communication-restricted scenarios is that the robots may
not be able to maintain the groups they formed initially or
at some replanning cycles. This shortcoming also affects
CoLoSSI when some of the following scenarios occur at
replanning time:
• An agent is within communication range of a group of
other agents that may includemembers not present in the
agent’s original group

• An agent ends up in a position where it is isolated
from other agents and thus proceeds to complete all the
remaining tasks by itself.

A. TEAM FORMATION USING MEETUP POINTS
1) SINGLE MEETUP STRATEGY
The first extension we propose to avoid the aforementioned
scenarios is a well-defined mechanism that enables a robot
to maintain its initial group after every replanning cycle. The
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FIGURE 4. Illustrates robots deciding the meetup cell (green cell) based
on their last position after completing their scheduled tasks.

objective is that once a robot is part of a group, it does not
lose any of its members and, over time, keeps forming larger
groups until its group encapsulates all the robots completing
the mission.

This approach allows the robots to decide on a common
task (location) to meet up at after executing all other tasks on
their schedules. Therefore, at every replanning cycle, all the
group’s robots will be at the exact location (e.g., a sector in the
SAR example) and look for other robots while maintaining
their initial group. The calculation of which task to meet
up on happens when the robots generate their mission plans
for the next time interval using CoLoSSI in their respective
groups. After the robots generate their mission plans, each
one of them shares its last task. This is because the last task
determines their final position after a particular time interval
is completed. The robots then calculate a task relatively near
each of the robots’ last task/position and use this task as a
meetup point, as shown in Fig. 4

We use the centroid of the locations of the last tasks in the
plans of all robots in the group to determine the meetup task
(and consequently the meetup point).

The robots will then add a path to the meetup task in their
respective schedules.

To account for the time the robots will spend to travel
to their meetup point, they partition the replanning interval
into two sections. Suppose we consider T the total time
robots have for an individual replanning cycle. Most of the
time is allocated for completing the tasks and is represented
by Twork . The remaining time is given for travel and is
described as Ttravel . The Ttravel is chosen so all robots can
reach the meetup point irrespective of their final position.
At any replanning cycle, T = Twork +Ttravel . The robots now
generate their respective mission plans that will be completed
within designated Twork time and then travel to the meetup
point in the remaining time Ttravel and replan at the meetup
point when all the robots arrive.

Although using meetup points accomplishes maintaining
and increasing group sizes, it has some shortcomings. Firstly,
each robot of a particular group has decided on a calculated
meetup task. Thus, they cannot recruit other robots they meet
while completing their respective tasks, as this would be
conflicting. Secondly, as each robot meetups at the same
point, their area of communication with other robots is
relatively small compared to what could have been possible
given the number of robots. This is mainly because all robots
are assigned to meet at a single point rather than spread up to
cover more areas.

2) EXTENDED RADIUS STRATEGY
To address limitations inherent in the SingleMeetup Strategy,
we introduce the Extended Radius Strategy. This adaptation
aims to significantly enhance the communication range of
robot groups by optimizing their spatial distribution.

We extend the concept of meetup points to dramatically
increase any group’s communication area by spreading apart
the robots over a place so that all are within communication
range rather than meeting at a single point. This is done by
stationing one of the robots at the meetup point called hub
robot and the others in the periphery of the communication
range of this hub robot. All other robots will now travel to
any point on the edge of the hub robot. This will allow each
group of robots to have a wider area of communication and
enable them to detect other robots faster and more efficiently.

Fig. 5 shows an example of the proposed approach. This
example showcases an environment where agents have a
communication restriction with a distance of 1 cell. The
solid lines and circles indicate tasks that have already
been completed/traversed and the dashed lines indicate the
scheduled tasks. As the figure shows, Agent 1 (in yellow)
has been designated as the hub robot. Agents 2, 3, and
4 are scheduled to move to tasks that are spread out 1 to
2 cells away from Agent 1, thereby increasing the overall
communication range of the group.

Although this approach allows a wider area of communi-
cation, it requires that the group executing this has at least
three robots. This is a crucial prerequisite as without enough
robots to act as a hub and link all robots, the robots can get
separated if positioned far away. Therefore, we need at least
three robots where one will take the role of hub robot, and
others can station themselves at the periphery of the hub.
The algorithm proceeds with the classical single meetup point
strategy until the number of robots has reached the required
number to implement the extended radius strategy. Once this
condition is satisfied, the robots implement star topology.

B. RECRUITMENT TO FORM LARGER GROUPS
Finally, we also allow robots to recruit other robots of
different groups if they encounter one another while doing
tasks. Note that each robot has the efficacy model of the tasks
and is aware of the work done by the entire group. Moreover,
each robot here is now aware of the meetup point it has to
return to, which implies that direct recruitment may conflict
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FIGURE 5. Shows the arrangement of the robots after a replanning cycle
is completed in a 2-cell communication setting. Here one robot is at the
hub (yellow cell), whereas the other robots are at the periphery of the
hub (red cells).

as the robots have different meetup cells calculated by their
respective groups. Therefore, they sync their efficacy model
and attempt recruitment when the robots meet.

The initiated recruitment process is based on the following
criteria:
• Cumulative work done by the respective groups
• Number of robots in the respective groups

The comparison is first made based on the cumulative work
done by the respective groups which is found by summing
the work done by each of the individual robots in that group.
Suppose the cumulative work done by each group is the same.
In that case, the respective group size of robots is compared,
and the one with the bigger group recruits the robot. The
rationale behind these criteria is to allow bigger groups that
have done more work to grow in size to increase overall
efficiency. If the robots have the same work done and the
same group size, the robot is recruited into any of the groups.
Moreover, each robot can recruit at most one robot during
a specific replanning cycle. This prevents further conflicts
when a robot shifts from one group to another. The recruiter
moves the new robot to the periphery of the hub robot or
directly to the meetup point if the robot’s group size is less
than required for the meetup points with an extended radius.
This is done by performing another round of replanning of the
recruiter and the recruited robot. At an instant, let T denote
the time allocated per replanning cycle. If the recruitment
process were initiated at some time T ′, the replanning would
only happen for the remaining time, i.e., T − T ′ time units.
Performing tasks in specific recruitment scenarios might be
impossible due to time constraints. In that case, the agents
directly move toward the meetup point.

In this approach, the time interval allocated to the robot
needs to be partitioned in a calculated manner so that robots
can arrive at their stationed position irrespective of their final
location. For this, the time interval is partitioned similarly to
the proposed meetup strategy.

VII. EMPIRICAL SETUP
In this section, we outline the empirical setup used to evaluate
the performance of the proposed algorithms in simulated
search and rescue (SAR) missions. Our focus is on the
structure of the search areas, composition of agent teams,
computational approach for solution comparison, agent
dynamics, and communication model of the environment.
Table 2 summarizes the main parameters used in the
evaluation.

A. SEARCH AREA STRUCTURE
The search areas are pre-determined and represented in a
cellular grid format. Each cell in the grid signifies a potential
search location for the agents. We analyze the algorithm’s
efficacy across three distinct grid sizes: (i) a 500 × 500 m2

area, (ii) a 1000 × 1000 m2 area, and (iii) a 2000 ×
2000 m2 area. Each cell in these grids spans an area of
100 × 100 m2, providing a consistent basis for comparing
different grid sizes. These specific sample sizes were selected
to represent small, medium, and large search areas commonly
encountered in SAR missions. This selection ensures that
our evaluation comprehensively covers different operational
scales, thereby enhancing the robustness and validity of our
results.

B. AGENT TEAM COMPOSITION
Our approach utilizes heterogeneous agent teams commonly
deployed in SAR operations. These teams comprise four
distinct types of agents: (i) human rescuers, (ii) scent-tracking
dogs, (iii) aerial drones (specifically quadrotors), and (iv)
fixed-wing drones. The number of agents in each problem
instance varies from 4 to 20 while maintaining an equal
distribution of each agent type. Furthermore, each agent
is characterized by one of four efficiency levels for task
completion, ranging from highly inefficient (sixteen time
steps per task) to highly efficient (two time steps per task).
This range of agent counts and efficiency levels allows
for a thorough assessment of our algorithms under various
operational conditions, ensuring that our findings are robust
and applicable to real-world SAR scenarios.

C. COMPUTATIONAL COMPARISON APPROACH
To benchmark our algorithm, we employ CPLEX®, a math-
ematical solver, as a comparative tool. The solver operates
under constraints, including a one-hour time limit, a 4
GB memory cap, and a maximum of 2 parallel threads.
In scenarios where computational limits are reached, CPLEX
provides the best solution found within the timeframe,
accompanied by a relative optimality gap or MIP gap.
Due to the stringent computational constraints, CPLEX
often yields sub-optimal solutions derived from its branch-
and-bound search process. It should be noted that the
CPLEX solver is a centralized solution algorithm, and we
use this to benchmark our decentralized algorithms. This
comparison provides a rigorous benchmark, ensuring that
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TABLE 2. Summary of parameters used in the evaluation.

our decentralized approaches are evaluated against a high-
standard baseline, thereby reinforcing the validity of our
results.

D. AGENT DYNAMICS AND INFORMATION EXCHANGE
In these environments, agents are initially grouped and
positioned at various locations. Each agent holds an updated
copy of the completion map, which reflects the overall
mission progress. This map is dynamically updated as agents
complete tasks and encounter other agents. For instance,
if Agent One finishes five tasks and Agent Two completes
four different tasks, uponmeeting, they will synchronize their
maps, collectively reflecting the completion of nine tasks.
This synchronization is a key feature in efficiently managing
and tracking mission progress.

E. COMMUNICATION MODEL AND GROUP FORMATION
Communication among agents is modeled based on a
Euclidean open-space disk, with a defined maximum range
for signal transmission and reception. This limited communi-
cation range necessitates dynamic detection of other agents,
facilitating group formation. Agents use an auction-based
algorithm for task distribution within these groups. Agents
exchange information and synchronize their completionmaps
during group formation and task completion. Additionally,
if an agent is isolated during the replanning phase, it assumes
responsibility for all remaining tasks, underlining the impor-
tance of agent connectivity for efficient mission execution.

VIII. RESULTS AND DISCUSSION
This section covers the evaluation of the proposed mission
planning approaches in various environments. We present the
evaluation of our algorithm in the context of SAR scenarios
in the wilderness (WiSAR), which is adapted from previous
works [48].

A. PERFORMANCE ANALYSIS OF COLOSSI VS. CPLEX®
We compare the performance of the CoLoSSI algorithm
against the CPLEX® mathematical solver in terms of
solution optimality and computational efficiency to establish
the suitability of CoLoSSI for makespan estimation. Specif-
ically, we analyze the CoLoSSI algorithm’s effectiveness in
managing different sizes of agent teams under specific spatial
and temporal restrictions. This involved acquiring 20 separate
instances for each team size and running CoLoSSI 10 times

FIGURE 6. Empirical estimation of the optimality gap of solutions
provided by CoLoSSI in 5 × 5 mission layouts.

per instance to calculate the mean makespan. In parallel,
we solved each instance with the CPLEX solver, using its
output as a standard for solution quality. Figure 6 presents the
optimality gap, which measures the performance difference
between CoLoSSI’s solutions and those derived from the
CPLEX solver.

Our analysis indicates that the solutions from CoLoSSI
are within a 34% optimality gap of the CPLEX solutions.
For smaller teams of 6 and 8 agents, CoLoSSI maintains
a median optimality gap of approximately 10% and 12%,
respectively, showcasing superior performance in scenarios
with fewer operational agents. As the agent count increases
to 10, the median gap rises to 15%, possibly due to the
coordination challenges and increased complexity of the
auctioning process that are less prevalent with smaller
teams. When the number of agents increases to 12, the
median gap reaches 18%. This indicates that the algorithm
is starting to leverage the increased agent count more
effectively.

However, for larger teams of 14 and 16 agents, the
median optimality gaps further increase to approximately
22% and 25%. This is due to the compounding complexity
of task coordination among a greater number of agents. The
increase in the median gap is coupled with a widening of
the IQR, particularly noticeable in the 14-agent scenarios,
suggesting greater variability in solution quality for larger
teams. The centralized coordination role of the auctioneer
in managing the bids and distributing tasks becomes more
challenging as the number of agents grows. The auction
process, though designed to handle concurrent bids, may
not always result in the most efficient agent-task pairings,
leading to suboptimal task assignments and increased overall
mission time. The variability in the performance of CoLoSSI
with medium-sized teams of 10 and 12 agents highlights
the algorithm’s sensitivity to the number of agents and the
complexity of their coordination. This illustrates the need for
refined strategies within the CoLoSSI framework to ensure
scalability and maintain solution quality as agent numbers
increase.
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TABLE 3. Comparison of makespan estimations for missions executed by
Sequential Single Item (SSI) Auctioning algorithm and CoLoSSI Algorithm
on 10 × 10 grid and 20 × 20 grid sizes.

B. BENCHMARKING COLOSSI AGAINST
STATE-OF-THE-ART SEQUENTIAL SINGLE ITEM
AUCTIONING
In assessing the effectiveness of CoLoSSI’s enhancements
for task scheduling, we observe a detailed comparative
analysis against the state-of-the-art Sequential Single Item
(SSI) Auctioning algorithm. This comparison spans 500 and
210 unique scenarios within 10 × 10 and 20 × 20 grid
environments, respectively, each subjected to 50 independent
algorithm runs to guarantee statistical reliability.

Our findings, as showcased in Table 3, highlight
CoLoSSI’s significant advances in reducing makespan across
a wide array of test cases. A notable observation is the
decreasing trend in makespan with an increasing count
of agents, consistent across both grid setups. Specifically,
within the 10 × 10 grid scenarios, the SSI algorithm’s
median makespan of 295 time units is notably reduced
to 143 time units when applying CoLoSSI. Similarly, for
the more challenging 20 × 20 grid configurations, the
significant decrease in makespan from 1397 to 687 time
units for the same number of agents underscores CoLoSSI’s
scalability and its strategic adaptability to more complex
and demanding environments. This level of performance
enhancement, consistently achieving over 50% improvement
across various configurations, not only reinforces CoLoSSI’s
superiority over the SSI approach but also emphasizes its
potential to redefine operational benchmarks in multi-agent
systems.

An equally important observation from the results is
the consistency in performance enhancement post-CoLoSSI
refinement, as evidenced by the convergence in makespan
values between the SSI and CoLoSSI algorithms. This
consistency is not a trivial outcome but a testament to the
sophistication of CoLoSSI’s negotiation and cooperation
mechanisms, which ensure that the collective effort of the
agents is aligned towards the most efficient completion of
tasks.

Such remarkable improvements stem from two pivotal
technical advancements inherent to CoLoSSI. Firstly, the
introduction of a bespoke bidding function adept at navigat-
ing the diverse capabilities within the agent team, paving the
way for a more meticulously strategic allocation of tasks.

FIGURE 7. Comparison of makespan between the centralized CPLEX
solver and the iterative CoLoSSI algorithm with a 25-time unit replanning
interval.

The second advancement involves a post-bid negotiation
process, fostering agent collaboration and equitable task
distribution. These enhancements collectively contribute to
a significant reduction in overall mission completion time,
affirming CoLoSSI’s optimized efficiency over the SSI
algorithm, the recognized state-of-the-art in task distribution
and scheduling.

C. COMMUNICATION-RESTRICTED SCENARIOS
1) COLOSSI’S ITERATIVE REPLANNING PERFORMANCE
We analyze the cost of the iteratively replanning CoLoSSI
algorithm’s capabilities, particularly in comparison to the
centralized solution approach represented by the CPLEX
solver in terms of makespan. To ensure a robust comparison,
we executed CoLoSSI across different scenarios with varying
numbers of agents, each subjected to 50 iterations to ensure
statistical stability especially when dealing with environ-
ments with network constraints and limited connectivity
similar to real-world environments. The orange series in
figure 7 represents the makespan outcomes of CoLoSSI’s
adaptive iterative replanning method, whereas the blue series
corresponds to the centralized approach’s results.

Looking at the interquartile range (IQR) of the data in
figure 7, we notice that for the CPLEX solver, the IQR
decreases steadily when the number of agents increases,
ranging from about 700-time units with 4 agents to about
100-time units with 16 agents. This trend can be explained
by the centralized solver’s capability to optimally allocate
tasks to a growing number of resources, thereby reducing
the variability in task completion times. In contrast, the
IQR for the iterative CoLoSSI algorithm does not display
a consistent reduction. Notably, the box for 16 agents
is larger than for other higher agent counts, which is
counterintuitive as one would expect lower variability with
more agents. This is because at a certain point, adding
more agents leads to a complexity threshold beyond which
the algorithm’s coordination mechanism–relying on frequent
communication and synchronization–begins to saturate. This
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saturation could result in certain agents being underutilized
due to communication bottlenecks, leading to a wider spread
in makespan outcomes. It should be noted that for both the
CPLEX solver and iterative CoLoSSI when the number of
agents is small (4 to 8), the IQR has a considerable breadth
to it. However, when the number of agents increases (10
to 16), the IQR is narrow except for 16 agents for iterative
CoLoSSI.

2) ANALYSIS OF REPLANNING INTERVAL EFFICACY
In assessing the impact of replanning intervals on mission
efficiency, our simulations incorporated various team sizes
and applied different interval strategies, executing 50 runs
per configuration. Our approach utilized a diverse agent team
composition with varying levels of task efficiency, showing
realistic heterogeneity in agent capabilities. Figure 8 indicates
a direct correlation between the frequency of replanning
and task completion speed. Shorter intervals consistently
led to quicker mission completions across different mission
scales. This efficiency can be attributed to the agents’
increased opportunity to integrate new information and
collaborate effectively at an earlier stage. The frequency
with which teams engage in replanning provides insight into
their operational efficiency. Figure 9 details the number of
replans executed before mission completion across various
team sizes and grid layouts. We observe that a higher
frequency of replanning directly correlates with reduced
mission makespan, showcasing the benefits of frequent
information sharing and coordination among agents.

Examining the adaptive replanning strategy based on Eq.
2, we found that its performance closely mirrors that of the
most frequent fixed interval (5-time units), yet with fewer
replanning events. This finding supports the hypothesis that
frequent initial replanning is crucial for gathering information
and forming effective agent sub-teams. As the mission
progresses and the agent’s knowledge of the environment
aligns more closely, the added value of replanning frequently
starts to decrease. These observations indicate that while
regular replanning can lead to quicker task completions at
the start of the mission, its effectiveness decreases over
time. The adaptive method provides a measured approach,
adjusting the rate of replanning to suit the current stage of the
mission without causing unnecessary complications through
too much coordination. This careful management is crucial
in real-world situations where computational power and the
ability to respond quickly are limited and valuable.

The results from our simulations support using the adaptive
replanning strategy in CoLoSSI, showing that varying the
replanning intervals in response to how much of the
mission has been completed can improve overall mission
performance. By employing this strategy, agents use the
latest information to coordinate their actions effectively while
avoiding the less productive aspects of replanning too often as
the mission nears its end. This adaptive method is, therefore,
a sensible choice for managing tasks among distributed
agents in changing conditions.

3) COMPARATIVE EVALUATION OF CO-COLOSSI’S MEETUP
STRATEGIES
The performance of the Co-CoLoSSI algorithm is influenced
significantly by choosing the correct replanning interval
strategy and meetup strategy. Our evaluation compares
the extended radius approach with the single-cell meetup
strategy, examining their efficacy in completing missions
across a range of replanning intervals. Figure 10 indicates
a clear advantage for the extended radius strategy over the
single-cell meetup approach, particularly evident in teams
with fewer agents. The extended radius strategy’s superior
performance can be attributed to its extended range of
communication and coordination, allowing agents to form
larger and more effective groups. This is crucial in scenarios
with fewer agents, where the ability to rapidly form larger
teams can significantly reduce the makespan by minimizing
redundant task execution. However, as the size of agent
groups increases, the disparity in performance between
the two strategies diminishes. For groups with more than
12 agents, the makespan results of both strategies converge,
suggesting that the benefits of extended communication
range are less pronounced when the agent team is already
large. In such cases, the inherent communication capabilities
within a large team may suffice to maintain efficiency,
rendering the extended radius strategy’s advantage less
impactful. Consistently, the adaptive replanning interval
strategy has shown to be the most effective, dynamically
aligning the frequency of replanning with the mission’s
progression. This adaptability is advantageous, offering a
balance between the need for regular updates in the mission’s
early stages and reduced frequency as the mission nears
completion, thus optimizing resource utilization throughout
the operation. This analysis reinforces the superiority of the
adaptive replanning interval, especially when considering
the operational flexibility it provides. By adjusting to the
real-time demands of the mission, this strategy ensures that
agents are workingwith themost current information in away
tailored to the evolving mission dynamics. This approach not
only streamlines mission execution but also maximizes the
effective use of available resources, a critical consideration
in time-sensitive scenarios.

In summary, we notice that the extended radius strategy
shows significant efficiency improvements in smaller teams
especially when employing the adaptive replanning interval
as its replanning strategy. This combination of strategies
emerges as the most consistently effective approach across
various team sizes and mission stages.

4) EVALUATING RECRUITMENT’S ROLE IN MISSION
EFFICIENCY
The extended-radius Co-CoLoSSI algorithm introduces a
recruitment feature, allowing robots to incorporate others
into their group during mission execution. We modified
the Co-CoLoSSI with an extended radius to restrict robots
from recruiting peers and compared this with the standard
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FIGURE 8. Performance comparison of the iterative CoLoSSI in different mission layouts: a 10 × 10 grid layout (left) and a 20 × 20 grid layout
(right). The figure illustrates the system’s efficiency under communication constraints in each scenario.

FIGURE 9. Frequency of replanning for heterogeneous teams of varying sizes in mission layouts: a 10 × 10 grid (left) and a 20 × 20 grid
(right), as generated by CoLoSSI. This highlights how team size impacts the replanning frequency in different spatial configurations.

FIGURE 10. Evaluating the Co-CoLoSSI algorithm’s makespan across various meetup strategies and replanning intervals in a
communication-restricted environment.

version that allows recruitment. Figure 11 contrasts the
makespan results from the version without recruitment
against those where recruitment is active. Both versions of
the Co-CoLoSSI algorithm were executed with the adaptive
replanning interval for consistency and fair comparison.
Moreover, as proved in the aforementioned results, the
adaptive replanning interval yields the lowest mission
makespan. In this manner, we can see the effect of recruitment

while keeping the replanning interval at its optimal setting.
The data clearly show that enabling robots to recruit
others consistently reduces the time taken to complete the
mission.

The benefit of recruiting is particularly evident with fewer
robots in the field. With limited numbers, each robot’s ability
to join larger groups is crucial, as it helps to minimize task
overlap and inefficient duplication of effort. In the case of
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FIGURE 11. Comparison of the mission completion times (makespans)
for Co-CoLoSSI with extended radius, shown both with recruitment and
without recruitment strategies. This illustrates the impact of recruitment
on operational efficiency.

FIGURE 12. Comparative analysis of Decentralized Co-CoLoSSI Algorithm
with Adaptive Replanning and different meetup strategies and Active
Recruitment Versus Centralized CPLEX Solver.

smaller group sizes, the isolation of robots into smaller,
independent groups can lead to a fragmented approach to task
management. This fragmentation often results in redundant
task execution, an inefficient allocation of resources, and,
consequently, an inflated makespan. Conversely, enabling
recruitment allows for a more cohesive and unified task
strategy, effectively reducing unnecessary task redundancy.
It should be noted that the effect of the recruitment strategy
noticeably becomes less significant when the group sizes of
the robots are large. This trend can be observed by looking
at the groups with more than 10 agents in Fig. 11. This is
because, during the start of themission, the groups are already
large enough to distribute the tasks very effectively, and any
additional recruitment does not significantly increase the task
distribution efficacy.

The results affirm the recruitment strategy’s effectiveness,
especially in small-scale agent teams, where the advantage of
pooling resources through recruitment substantially enhances
mission efficiency.

5) COMPARATIVE ANALYSIS OF DECENTRALIZED
CO-COLOSSI AND CENTRALIZED CPLEX SOLVER
we compare the performance of the Co-CoLoSSI algorithm,
which incorporates adaptive replanning, Extended radius

meetup, and active recruitment, against the centralized
CPLEX solver within communication-restricted environ-
ments. Analyzing Fig. 12, we note that the Co-CoLoSSI
algorithm with the extended radius strategy significantly
improves performance compared to the single-cell meetup
strategy, particularly for smaller teams of agents. The
extended radius strategy shows a median makespan that is
up to 25% lower than that of the single-cell strategy when
fewer than 10 agents are used, indicating its effectiveness
in improving agent coordination and task completion, even
with limited communication. As agent numbers increase
beyond 10, the performance of both Co-CoLoSSI strategies
begins to converge, suggesting that the larger the group,
the less impactful additional recruitment becomes for task
distribution efficiency. Figure 12 indicates a significant
trend that the Co-CoLoSSI algorithm utilizing an adaptive
replanning interval combined with the extended radius
meetup strategy and active recruitment aligns closely with
the performance of the centralized CPLEX solver. This trend
is particularly noteworthy because, although the centralized
solver offers an optimal solution in a centralized manner,
the Co-CoLoSSI’s algorithm achieves comparable efficiency
under the realistic constraints of limited communication
while executing in a decentralized manner.

This evidence reinforces the Co-CoLoSSI as a viable alter-
native to centralized methods, particularly when centralized
control is infeasible. The decentralized algorithm showcases
the agility required in rapidly evolving scenarios, ensuring
that agents operate at peak coordination efficiency despite
intermittent communication. The ability of Co-CoLoSSI to
adapt to the number of agents and the progression of the
mission while dynamically adjusting its replanning intervals
and group strategies–translates into a flexible, scalable, and
efficient approach to decentralized task management.

In the context of missions where communication channels
are often compromised, the configuration comprising the
Co-CoLoSSI algorithm with adaptive replanning, extended
radius meetup, and active recruitment stands out as the most
robust decentralized approach. It demonstrates operational
competence, closely approaching the centralized solution’s
makespan while executing in a fraction of the time taken
by the centralized approach. This analysis confirms the
Co-CoLoSSI algorithm’s advanced capabilities, presenting
it as a near-optimal decentralized solution for complex,
communication-limited operational environments.

IX. CONCLUSION
We present CoLoSSI, an auction-based solution approach for
cooperative, load-balancing task allocation and scheduling
using sequential single-item auctions. The work was moti-
vated by the computation and communication constraints
of real-world scenarios, mainly due to the lack of network
infrastructure and the need for rapid re-computation of
plans to adapt to the mission dynamics. The main features
of the algorithm are a bidding function that optimizes
completion time and explicitly takes into account team

VOLUME 12, 2024 132853



I. Ansari et al.: CoLoSSI: Multi-Robot Task Allocation

heterogeneity and non-atomic task completion and two
post-processing schemes that further enhance team coop-
eration and load-balancing. We also introduce a variant,
named Co-CoLoSSI, which improves the performance of
CoLoSSI in communication-limited environments. The main
features of Co-CoLoSSI include effective ways of providing
communications to the robots based on the occurrence of
spatial relations among the robots. These spatial relations are
arranged around meetup points that are enforced inside the
auction-based algorithm, and aimed at favoring communica-
tion during the execution of the algorithm. We validate the
scalability of our methods and show that we could balance
the trade-off between computation vs. coordination with
the distributed system, in general, performing within 50%
with respect to centralized implementation. Furthermore,
results show that the connectivity-aware variant Co-CoLoSSI
improves the team’s performance by promoting network
connectivity.
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