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Abstract—Indoor navigation and wayfinding have a wide range
of applications, from enabling robots to efficiently navigate ware-
houses to enhancing mobility for people with visual impairments
(PVI). These systems rely on a combination of localization,
obstacle detection, and path-finding technologies. While real-time
obstacle/object detection is essential for safe indoor navigation,
current solutions are impractical, face privacy concerns, and have
high barriers to adoption; particularly for PVI. In this paper,
we introduce DareDevil, a highly deployable indoor navigation
system that ensures safe navigation while preserving user pri-
vacy. DareDevil offers three main components: a comprehensive
navigation dataset, a real-time thermal-based obstacle detection
model, and a thermal colorization module that feeds thermal
data to the model during inference. The thermal-based dataset
supports seamless navigation in both indoor and outdoor envi-
ronments. Our system provides trained models of varying sizes;
making it compatible with a wide range of high-end IoT devices
and eliminating the need for bulky or expensive processing units.
We evaluate DareDevil’s performance across different model sizes
and thermal image colorization schemes. Our results show that
DareDevil’s models can achieve higher accuracy compared to the
state-of-the-art real-time object detection model. Furthermore,
the findings highlight the often-overlooked impact of thermal
image colorization on thermal-based models.

Index Terms—Indoor Navigation, Object Detection, Thermal
Imaging, YOLO, Privacy Protection, Machine Learning

I. INTRODUCTION

Indoor navigation involves determining and following routes
within enclosed environments like shopping malls, airports,
and office buildings. Unlike outdoor navigation, indoor en-
vironments present unique challenges due to the absence
of satellite signals and the complexity of indoor layouts.
Applications of indoor navigation range from guiding robots
in warehouses to improving mobility for people with visual
impairments (PVI) [1, 2, 3]. These systems depend on a
combination of localization [4, 5], obstacle detection, and
pathfinding technologies [6]. However, several barriers hin-
der their widespread adoption, particularly for PVI. Barriers
include depending on external infrastructure (e.g., Bluetooth
beacons, Wi-Fi networks), difficulty in maintaining accurate
localization, high costs, low portability, steep learning curves,
and privacy concerns; especially with camera-based solutions
[7, 8].

While real-time obstacle/object detection is essential for
indoor navigation, current solutions face high deployment
barriers. Many solutions rely on expensive dedicated comput-
ing units and specialized sensors, which pose both financial
and physical burdens to users [9, 10]. In addition, these
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systems often rely on RGB images [11, 12]. Despite their
high performance in the detection of multiclass objects, they
can collect personally identifiable information, such as details
of facial features, raising privacy issues [13]. Thermal imaging
offers a more reliable and privacy-preserving alternative[14],
and has been widely adopted in privacy-sensitive applications;
such as crowd monitoring [15, 16], smart homes [17], and
autonomous vehicles [14]. To be effective, thermal images
must be collected in real-time and processed by a model
trained to analyze them and recognize objects. However,
developing such a model requires access to indoor thermal
image datasets, which are currently lacking. Popular datasets,
such as KAIST [18], CVC-14 [19], LLVIP [20], are focused
solely on outdoor environments, while indoor datasets like
TRISTAR [21] and OdomBeyondVision [22] are tailored to
tasks unrelated to object detection, such as human posture
analysis and odometry. As a result, thermal-based models
designed for outdoor environments [23] tend to perform poorly
indoors, struggling to identify obstacles beyond humans or pets
[24, 25].

This paper introduces DareDevil, a privacy-preserving de-
ployable indoor navigation system. DareDevil provides an
indoor thermal-based dataset and a real-time obstacle detection
model that ensures safe navigation while maintaining user
privacy. Three key factors drive its high deployment poten-
tial. First, DareDevil offers three model sizes, each capable
of running on various devices, including high-end mobile
and IoT devices. This eliminates the need for additional,
specialized, expensive, or bulky processing units, allowing
users to leverage their existing high-end mobile devices to
run the obstacle detection model. Second, DareDevil pro-
vides a comprehensive dataset, enabling seamless operation in
indoor and outdoor environments. This versatility is crucial
for integrating the obstacle detection module with existing
localization and pathfinding technologies, providing PVI with
a more seamless and enhanced navigation experience. Third,
the system’s strong privacy protections are a significant step
toward increasing the adoption of indoor navigation solutions.

DareDevil consists of three main components: a compre-
hensive navigation dataset, a real-time thermal-based obstacle
detection model, and a thermal colorization module (Section
II). To create a robust thermal dataset that enhances model
performance, DareDevil combines an existing outdoor thermal
dataset with a newly developed indoor dataset. The indoor
data is extracted from collected thermal videos and undergoes
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several preprocessing steps. This includes video alignment,
frame extraction, automated annotation, and colorization, to
generate a synthesized thermal image dataset. This dataset
is then used to train new models of different sizes based
on the widely adopted real-time object detection framework,
YOLOVS8 (You Only Look Once) [26]. As YOLO is designed
to process 3-channel RGB images, DareDevil features a real-
time module that converts captured thermal video frames
to RGB images using a selected colormap, and feeds these
images to the model in real-time during inference.

We evaluate DareDevil’s trained models, in terms of infer-
ence time and Mean Average Precision (mAP), using different
colormaps (Section III). DareDevil demonstrates higher per-
formance compared to the original state-of-the-art YOLOVS
RGB-based models [26]; achieving a high mAP of up to 79.3%
across all model architectures and colormaps. The results also
emphasize the significant impact of thermal image colorization
on model performance, a factor often overlooked in previ-
ous research. In some cases, colormap selection resulted in
a performance drop of up to 6.1% in mAP. Additionally,
we use a DareDevil’s RGB-based model, trained on RGB
images, as a baseline to DareDevil’s thermal-based models.
The findings indicate that thermal-based models trained on
colorized thermal images outperform RGB-based models. This
is likely due to the thermal representation’s ability to highlight
key features, reduce visual noise, and provide more consistent
object contrast, especially in challenging environments.

II. METHODOLOGY

This section outlines the specifications, technical challenges,
and solutions implemented for DareDevil’s key components.
There are three key components: a comprehensive navigation
dataset, real-time thermal-based object detection models, and
a real-time thermal colorization module that feeds thermal
data to the model during inference. Figure 1 summarizes
our methodology, while further implementation details can be
found in DareDevil’s open-source repository [27].

A. Dataset Creation

We now describe the process of creating an indoor thermal
dataset for object detection, which involves data collection and
several preprocessing stages, as illustrated in Figure 1.

Training a YOLO model requires a large dataset of anno-
tated images to enable accurate object detection and classifica-
tion. For each image, YOLO needs a corresponding annotation
file containing bounding box coordinates and class labels for
the objects in that image. These annotations guide the model
in identifying object locations and types.

1) Data Collection: To develop a comprehensive dataset
that enables robust model performance in indoor environ-
ments, we augment the Teledyne FLIR ADAS Dataset [28]
(FLIR) with a new dataset collected from recordings inside
the Carnegie Mellon University Qatar (CMUQ) campus. In-
tegrating these two datasets serves multiple purposes. While
our primary focus is indoor navigation, training on a combined
dataset enhances the model’s ability to operate seamlessly in
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Fig. 1: DareDevil’s Methodology

both indoor and outdoor settings. This is essential for integrat-
ing the obstacle detection module with existing localization
and pathfinding technologies, providing PVI with a smoother
navigation experience. Additionally, our indoor dataset has
limited diversity in lighting conditions, object appearances,
and spatial layouts, which could hinder model generalization.
Incorporating the larger, more varied outdoor FLIR dataset in-
troduces greater variability, improving the model’s adaptability
and robustness in different indoor environments.

The FLIR dataset is a comprehensive, publicly available
dataset that comprises thermal images for outdoor environ-
ments, with annotation in accordance to MSCOCO format
[28]. This dataset consists of 10,742 thermal images in the
training set, 3,749 images in the testing set, and 1,144 images
in the validation set. This large dataset adds up to 15,635 fully
annotated frames with 520,000 bounding box annotations.

FLIR dataset is augmented with our dataset that was created
based on a 3-minute video collected using a FLIR DUO Pro
R RGB and thermal imaging camera. Such a dual camera was
critical for dataset creation since existing YOLO models work
for RGB images. Hence, we used these RGB video images
as the ground truth for labeling and annotating thermal video
images; as explained in Section II-A2. The RGB and thermal
videos capture the indoor environment of the CMUQ campus
and include various objects, such as people, chairs, tables, and
plants, to simulate real-world indoor navigation scenarios. The
data collection aimed to create a diverse and comprehensive
dataset suitable for training our obstacle detection models.

2) Preprocessing: The dual RGB and Thermal videos were
used to create an annotated and labeled thermal dataset for
YOLO training. RGB video images were annotated and la-
beled and used as a reference for thermal image annotations
and labeling. However, this required multiple preprocessing
steps (Fig. 1) which are listed below.

Timestamp Alignment: The collected RGB and thermal
videos had different lengths, with the RGB video being one
second longer due to a potential synchronization issue in the
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(a) Example of frozen frame

(b) Example of aligned frames

Fig. 2: Frame filtering and alignment

camera hardware. To align the timestamps, we identified a
common calibration frame and manually synchronized the
videos using a video editing tool. This process involved
trimming the extra second from the RGB video to ensure both
videos started and ended at the same time.

Video Frame Extraction and Filtering: The RGB and
thermal videos were extracted into 930 frames each using
OpenCV, at a frame rate of 5 frames per second to allow
more frame-to-frame variation. Some of the thermal frames
were frozen in place due to the camera saving time, with a
blue square shown on the top right of that frame (e.g. Fig.
2a). When this happens, the subsequent frames will not match
the corresponding frames in the RGB video, and will affect
downstream annotation and training. After removing frozen
frames, 905 valid frames are extracted from the video.

RGB-Thermal Frame Alignment: Manual alignment of
RGB and thermal frames was performed to address the dis-
crepancy in their capture parallax. We cropped and resized the
frames to match the thermal image dimensions using a photo
editing tool; ensuring that corresponding RGB and thermal
frames were perfectly aligned (Fig. 2b).

Automated Annotation: We implemented an automatic
image labeling method to avoid the time cost of manual
annotation. We first used the pre-trained YOLOvV8 model
provided by Ultralytics [26] to annotate the RGB frames. After
a label file is generated for each RGB frame, these labels
are transferred to the corresponding thermal frames, marking
the bounding boxes and classes of the corresponding objects.
Annotations were used as a reference for the thermal images,
ensuring consistency across both data modalities (Fig. 3).

Label Binarization: All labels are cast to a single class
representing obstacles for three critical reasons. First, it max-
imizes the model’s ability to detect obstacles in thermal
environments agnostic to the object’s class. Second, this is
critical for speeding up the inference time, allowing a fast
response to navigating users, which is important for PVI’s
safety. Third, it is sufficient for rudimentary navigation for
PVI, where the main goal is to avoid colliding with objects
like walls or furniture. However, to compensate for the lack
of detailed object classification, the aim is to integrate this
binary obstacle classification with a localization system that
provides contextual information (such as the user’s position
and the layout of the environment) [29]. For example, when a
user is navigating a shopping mall, the binary object detection
quickly identifies an obstacle ahead, while the localization

Fig. 3: Sample frame with RGB to thermal label transfer

system knows the user is near an elevator based on the map.
The system provides guidance such as “Obstacle ahead, this is
likely the reception desk.” The user can avoid the obstacle and
move toward the next point, such as a nearby store or exit. This
approach balances simplicity and effectiveness, making it a
viable solution for safe indoor navigation for visually impaired
users, especially in pre-mapped or well-known environments.

Image Colorization: Thermal images often require col-
orization to be processed by computer vision models, which
generally operate on RGB images. Thermal images are typi-
cally 1-channel (grayscale) images. They capture temperature
information in a single band, where each pixel represents a
temperature intensity, usually in shades of gray. For instance,
black is commonly used for cooler areas and white for hotter
areas. However, models like YOLOvVS (on which DareDevil’s
models are based) are designed to process 3-channel RGB im-
ages. Hence, 1-channel thermal images must be converted to 3-
channel images by applying a colormap. However, converting
high-bit thermal images (up to 14 bits per pixel) to RGB can
result in significant information loss [30]. Besides, existing
research in thermal-image-based object detection models has
largely overlooked the impact of colorization schemes on
model training outcome [31, 32, 33]. Further research is
needed to understand its impact on object detection within
indoor navigation systems.

To plant the seed for future research on the effects of
thermal colorization in computer vision, we selected different
representative colorization schemes for the DareDevil’s dataset
from OpenCV library. In addition to the original colorization
scheme, we selected HSV, Inferno, and Hot (Fig. 4, Fig. 5).
HSV has enhanced color contrast, which is prevalent in image
processing. Inferno is a high-contrast scheme at low values,
while Hot is a high-contrast scheme at high values.

Final Dataset Specifications: In summary, DareDevil’s
thermal dataset consists of 11,285 images in the training set,
4,021 in the testing set, and 1,234 in the validation set. The
split is roughly 6:3:1 for training, testing, and validation data.
Datasets with different colormaps are created from this data
set to evaluate the impact of thermal-image colorization on
model’s performance; as explained in Section III.

B. Model Training

1) Model Backbone: DareDevil’s models are built based on
the state-of-the-art YOLO framework; specifically, YOLOvS8
[26]. YOLO stands out from other object detection backbones
for achieving real-time inference speed while maintaining high
accuracy on diverse datasets [34, 35]. With open-source archi-
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a) Original Image

b) HSV Colormap
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Fig. 4: Example FLIR images with applied colormaps: origi-
nal, HSV, Hot, and Inferno; respectively

tectures across different sizes, YOLO has been widely adopted
for real-time object detection systems, in domains such as
autonomous vehicles and robotics. We use YOLOVS models
(nano, small, medium) as our backbone for object detection.
Nano prioritizes speed over accuracy, making it useful for
real-time applications on limited hardware. Small balances
speed and accuracy well, suitable for mid-range applications.
Medium achieves higher accuracy but with a higher computa-
tional cost. The Nano, Small, and Medium model architectures
contain 3.2, 11.2, and 25.9 million parameters, respectively.
This choice of different model architecture sizes provides
flexibility for running model inference on different computing
devices; including high-end mobile and IoT devices. Instead of
relying on additional, special, expensive, or heavy processing
devices, DareDevil opens the door for users to rely on their
high-end mobile devices to run the obstacle detection model.

2) Training Process: The training was performed on 2
NVIDIA A100 Tensor Core GPUs, using Python 3.12.2 and
PyTorch framework. Different models were trained with our
dataset using the architectures of YOLOv8 model (tiny, small,
medium) from Ultralytics [26]. The training parameters were
configured as follows: a learning rate of 0.01, batch size of
16, 100 epochs, and the auto optimizer, which automatically
selects an appropriate optimizer based on the model’s configu-
ration. The training process involved iteratively improving the
model by analyzing its performance on validation data and
making necessary adjustments.

Figure 6 presents training curves for DareDevil ’s Medium
Model under the original colormap. Horizontal axis represents
the training epoch, the blue dots are the data points, and
the red dots represent the trend line; Figure 6. Other models
show a similar pattern with different colormaps. Validation
losses consistently decrease over 100 epochs, indicating that
the models do not exhibit signs of overfitting. Plateauing
observed in (Mean Average Precision) mAP50 and mAPS50-
95 metrics suggests that sufficient training has been performed
and the models are not underfitting. The mAP is a standard
metric to assess the performance of object detection models,

a) Original Image

b) HSV Colormap
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Fig. 5: Example images from collected video with applied
colormaps: original, HSV, Hot, and Inferno; respectively
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Fig. 6: Training and Validation curves for DareDevil’s Medium
Model using original colormap dataset.

which considers both precision and recall. mAPS50 is the
average precision when Intersection over Union (IoU) is 50%,
where IoU is a metric that measures the overlap between the
predicted bounding box and the ground truth box. mAP50-95
is the average precision across IoU thresholds from 50% to
95%, providing a more thorough measure of accuracy across
various levels of object detection difficulty. Collectively, the
training curves in Figure 6 indicate that the models have
undergone adequate training.

C. Automated Inference

The third component DareDevil offers is a real-time thermal
colorization module that feeds thermal data to the model
during inference. This module extracts thermal images from
the thermal camera and colorizes them to RGB images, which
are then fed to the model. The model generates a label file
that can be leveraged in downstream tasks during navigation,
such as giving real-time warnings or navigation instructions.
The model output contains information about detected objects,
including their bounding boxes and confidence scores.

III. PERFORMANCE ANALYSIS

We evaluate DareDevil’s trained models in terms of mAP50
and mAP50-95 using different colormaps. To investigate the
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TABLE I: DareDevil’s performance given different colormaps

Colormap | Backbone | mAP50 | mAP50-95
Original Nano 0.722 0.452
Small 0.768 0.498
Medium 0.793 0.527
HSV Nano 0.653 0.390
Small 0.711 0.439
Medium 0.735 0.464
Hot Nano 0.665 0.399
Small 0.717 0.447
Medium 0.744 0.475
Inferno Nano 0.668 0.401
Small 0.725 0.453
Medium 0.748 0.482

I
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N YOLOV8 Medium mAP50
EEE YOLOV8 Medium mAP50-95

Emm YOLOv8 Nano mAP50
EEE YOLOv8 Nano mAP50-95
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Fig. 7: Performances for trained models with different archi-
tectures under different colorizing schemes for thermal images

impact of colorization on model performance, We trained each
model architecture (Nano, Small, Medium) on three more
datasets constructed from the following colormappings: HSV,
Hot, and Inferno (Fig. 4 and Fig. 5). As explained in Section
I, these datasets are created from the original thermal images
using colorization schemes from the OpenCV library.

DareDevil achieves high mAPs across all model backbones
and colormaps; as shown in Table I and Fig. 7. Medium back-
bone models generally achieve higher accuracy than Small
models, which in turn outperform the Nano ones. The mAP
gap between Nano and Small is up to 6%, while the gap
between Small and Medium is up to 3%; across all colormaps.
This pattern is typical in YOLOv8 models, which are the base
for DareDevil’s trained models. Larger YOLOvV8 models can
learn richer and more complex data representations, handle
object classification with more precision, and generalize better
to diverse or challenging scenarios.

The mAPs of DareDevil’s thermal models are higher than
those of the original state-of-the-art YOLOv8 RGB-based
models. Based on previous YOLOvV8 benchmarks on other
datasets (e.g. COCO), YOLOVS8 achieves mAPs of 0.37, 0.44,
and 0.5 for Nano, Small, and Medium architectures; respec-
tively [26]. The higher performance of DareDevil’s models is
generally due to label binarization. Even though YOLOvV8’s
mAP scores might seem lower compared to some other state-
of-the-art models (like the latest versions of EfficientDet,
Faster R-CNN, or Transformer-based detectors), those mAPs
are generally considered “high enough” for YOLO. This is
especially true given its design goals and trade-offs. It achieves
a high enough mAP relative to its real-time capabilities.
Hence, it is considered excellent for applications where speed,

TABLE II: Original YOLOv8 models Performance

Model Inference time (ms) | mAP50 | mAP50-95

Nano 1.7 0.606 0.372

Small 2.6 0.671 0.423
Medium 5.1 0.704 0.456

efficiency, and moderate accuracy are more important than
pushing the absolute highest precision boundaries. YOLOvS8
provides the best balance between real-world usability and
accuracy for many use cases.

The results highlight the significant impact thermal-image
colorization can have on model performance, an aspect that
has been largely overlooked in previous research. While much
research utilizes other colormaps [23, 31, 32], the original
grayscale colormap resulted in a higher accuracy across all
model backbones. It achieves an average mAP increase of
over 5%, compared to other colormaps. This scheme pro-
vides a more straightforward representation of thermal images,
facilitating better feature extraction, clarity, and thus model
performance; compared to other schemes. Inferno-based model
performance is lower than that of Hot, which is in turn lower
than HSV across all backbones. Hence, the most significant
performance gap, 6.1% is between Original and HSV. Inferno
and Hot use a more intuitive gradient that emphasizes warmer
temperatures, which may highlight features more effectively
for obstacle detection. However, HSV can introduce more
variations in color perception, potentially making it harder for
the model to differentiate between similar thermal intensities.
These insights are critical for future research as it demonstrates
the importance of selecting appropriate colorization techniques
to maximize the efficacy of thermal-based vision systems.

To compare DareDevil’s thermal-based models to a baseline,
we train an RGB model for each architecture (Nano, Small,
Medium); using the RGB images that correspond to the ones
in our thermal dataset. These RGB images are extracted from
the RGB video captured using the dual camera.

Compared to DareDevil’s RGB-based models, DareDevil’s
thermal-based models achieve higher mAPs and comparable
inference time (Table II). Generally, the thermal-based model
performance on colorized thermal images is better than the
RGB-based model performance on corresponding original
RGB images. Nano RGB-based model is 1.8% off from the
Nano-HSV model while it is 8% off from the Nano-Original
model in terms of mAP50-95. The medium RGB-based model
underperforms Medium-HSV and Medium-Original by 0.8%
and 7.1%; respectively. Although the performance gaps are
slightly larger for mAP50 compared to mAP50-95, it shows
a similar performance pattern for the models. The reason
for thermal-based models’ outperformance is that thermal
representation emphasizes key features, reduces visual noise,
and provides more consistent object contrast, particularly in
challenging environments. This allows the model to focus on
more relevant information for obstacle detection. Regarding
inference time, the performance is highly comparable to the
RGB-based model, indicating that the constructed thermal-
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based models do not induce additional latencies. The inference
time per frame for the different models is as follows: nano 0.99
ms, small 1.20 ms, and medium 1.83 ms. This low inference
time is crucial for providing real-time obstacle notifications,
ensuring safer navigation, particularly for PVL

IV. CONCLUSION AND FUTURE WORK

In this paper, we introduce DareDevil, a deployable indoor
navigation system that ensures safe navigation while preserv-
ing user privacy. DareDevil offers three main components: a
comprehensive navigation dataset, a real-time thermal-based
obstacle detection model, and a thermal colorization module
that feeds thermal data to the model during inference. The
thermal-based dataset supports seamless navigation in both
indoor and outdoor environments. The system provides trained
models of varying sizes; making it compatible with a wide
range of high-end IoT devices and eliminating the need for
bulky or expensive processing units. We evaluate DareDevil
across different model sizes and thermal image coloriza-
tion schemes. Our results show that DareDevil’s models can
achieve a mean Average Precision (mAP) of up to 79.3%,
which is higher than the original state-of-the-art RGB-based
YOLO architectures. Our findings support the development of
an accurate, real-time, and privacy-preserving thermal-based
navigation solution, that addresses a significant gap in current
research. In the future, we plan to expand the dataset with
more objects, integrate this obstacle detection system with a
localization system, and conduct extensive real-world testing
and validation of the proposed system.
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