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ABSTRACT This work is about mission planning in teams of mobile autonomous agents. We consider tasks
that are spatially distributed, non-atomic, and provide an utility for integral and also partial task completion.
Agents are heterogeneous, therefore showing different efficiency when dealing with the tasks. The goal is
to define a system-level plan that assigns tasks to agents to maximize mission performance. We define the
mission planning problem through a model including multiple sub-problems that are addressed jointly: task
selection and allocation, task scheduling, task routing, control of agent proximity over time. The problem is
proven to be NP-hard and is formalized as a mixed integer linear program (MILP). Two solution approaches
are proposed: one heuristic and one exact method. Both combine a generic MILP solver and a genetic
algorithm, resulting in efficient anytime algorithms. To support performance scalability and to allow the
effective use of the model when online continual replanning is required, a decentralized and fully distributed
architecture is defined top-down from the MILP model. Decentralization drastically reduces computational
requirements and shows good scalability at the expenses of only moderate losses in performance. Lastly,
we illustrate the application of the mission planning framework in two demonstrators. These implementations
show how the framework can be successfully integrated with different platforms, including mobile robots
(ground and aerial), wearable computers, and smart-phone devices.

INDEX TERMS Multi-robot systems, mobile robots, cooperative systems, planning, decision support

systems, optimization methods, genetic algorithms, mathematical programming.

I. INTRODUCTION
Heterogeneous multi-agent teams, combining diverse types
of physical agents' such as robots, humans, and ani-
mals, are becoming a viable solution to tackle complex,
spatially-distributed real-world problem scenarios. Teaming-
up physical agents with different cognitive and sensory-motor
skills can naturally provide heterogeneity and redundancy
of resources, parallelism, and distribution, making it highly
suited for real-world missions in scenarios such as search and
rescue, marine environmental monitoring, and surveillance.
In this work we consider weakly cooperative systems [40],
where the system-level performance can be boosted by an
underlying scheme of cooperation, but cooperation is not
strictly necessary for mission achievement. Our high-level
goal is to define mission plans such that agents get effectively
coordinated and positive team-level synergies arise.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yilun Shang.
Henceforth we use the term agent and robot interchangeably
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A typical mission can be conveniently represented in terms
of a set of tasks where tasks can have dependencies, prior-
ities, time windows, utilities, costs, and so on. Traditionally,
the concept of task is related to the actions that agents execute,
without attaching to it a notion of spatial locality. Instead,
in this work we emphasize that in many mission scenarios
of practical interest, tasks are related to specific spatial loca-
tions, where the task ’resides’ and must be serviced. There-
fore, we consider missions composed by spatially distributed
tasks, where the completion of each task can deliver a given
mission-level utility. We focus on the realistic case when
the mission is constrained by limited time budget, such that
some tasks may be left uncompleted, making it necessary to
select which tasks to service during the available mission time
with the goal of maximizing the overall utility.”> Moreover,
we consider tasks that are, in general, not atomic: they can
be brought to completion incrementally, possibly by different

2We also consider the complementary scenario when mission time is
unconstrained. In this case, the goal is to minimize the makespan.
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agents and at different times, where a partial task completion
provides some positive utility.

Under these premises, we define mission planning as the
assignment of subsets of spatially distributed tasks to hetero-
geneous agents with the aim of maximizing a system-level
utility (assuming that task utilities can be composed addi-
tively). The agents are assumed to be single-task [23] and
need to be mobile for switching from one task to another,
with an associated traveling cost. The mission planning prob-
lem breaks down into three sub-problems that need to be
addressed jointly: task selection and allocation, task schedul-
ing, and task routing.

Task selection and allocation is about choosing and
assigning a subset of tasks to each one of the agents
while optimizing the matching between task and agent skills
(sensory-motor, cognitive). Given the assumed spatially dis-
tributed nature of the tasks, task routing defines the execution
sequence of the tasks assigned to each agent, which in turn
defines the routes the agents use to travel from one task to
the other. Additional space-time constraints can be taken into
account when relations about the proximity among agents
(e.g., be close to favor communications and collaborations,
be far from each other to minimize interference) need to
be enforced or promoted. Finally, task scheduling defines
how much time an agent should spend on each task. E.g.,
the workload of a task can be divided among multiple agents,
servicing it at different times, if it makes the overall mission
plan more efficient.

In this work we tackle the team mission planning problem
as described above, addressing the joint solution of task
selection and allocation, scheduling, routing, and proximity
relations. We provide a formal definition of the problem and
prove that it is NP-hard even if all tasks are non-atomic.
This is a central contribution since previous work has con-
sidered atomic tasks and, while problems with atomic tasks
are usually NP-hard, a deeper understanding of the compu-
tational complexity is needed of problems with non-atomic
tasks.

We introduce a mathematical formulation of the mission
planning problem as a mixed-integer linear program (MILP).
We present both heuristic and exact solution algorithms that
are computationally efficient. We also introduce a decen-
tralized method that allows to solve the problem in a fully
distributed way and shows to be scalable and usable in an
online replanning scheme (e.g., during mission execution,
if unexpected events or deviation happens, it might be nec-
essary to replan on the spot). A number of computational
experiments are performed to study efficiency and efficacy of
the proposed solution methods as well as to compare their per-
formance against state-of-the-art methods. Simulations are
used to study the properties of the decentralized implemen-
tation. Finally, we describe two real-world deployments that
illustrate the application of the proposed model and methods
and highlight their versatility.

More precisely, the contributions of this paper can be
summarized as follows:
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o It presents an original formal definition of the spatial
task allocation and scheduling problem in heteroge-
neous multi-robot teams (STASP-HMR) and its formu-
lation as a MILP.

o It extends the basic problem definition STASP-HMR
with a set of linear formulations for representing
spatio-temporal proximity relations (e.g., networking,
interference) among the agents.

o It provides the formal proof for the NP-hardness of
STASP-HMR.

« It proposes an original heuristic, in the form matheuris-
tic [35], for tackling the computational and scalability
challenges of STASP-HMR. The matheuristic features
evolutionary operators that embed MILP formulations
and solvers. In this way, it is able to accommodate
multiple variants and time-requirements of the problem
while keeping low the computational demands.

« It proposes an anytime exact algorithm that finds solu-
tions with formal guarantees on optimality based on
the synergistic combination of matheuristic solvers and
MILP solvers that dynamically cooperate by exchang-
ing incumbent solutions. Through empirical analysis,
we show that this combination allows both components
to speed up finding good quality solutions and outper-
forms a state-of-the-art method.

o It describes a distributed and decentralized architecture
based on implicit coordination [28], which shows to be
scalable and can be employed for online replanning at
the expenses of moderate losses in performance.

The paper is organized as follows. Related work is dis-
cussed in the next section. The formal model of the STASP-
HMR is introduced in Section III. The NP-hardness of the
STASP-HMR is proved in Section IV. The STASP-HMR
is mathematically formulated as a MILP in Section V. The
spatio-temporal relations are formalized in Section VI. The
solutions methods are presented in Section VII (matheuris-
tic) and in Section VIII (anytime, exact algorithm). Central-
ized and decentralized architectures for online replanning
are presented in Section IX and X, respectively. Computa-
tional experiments and results are discussed in Section XI.
Real-world demonstrators are described in Section XII.
Finally, Section XIII concludes the paper and highlights some
possible future research directions.

Il. RELATED WORK

In its most basic form, the problem of selecting and allocating
sequences of tasks to a team of robots can be formulated
as a Vehicle Routing Problem (VRP), a well-known family
of combinatorial optimization problems. VRPs are widely
studied in the field of Operations Research (OR), and relate to
the transportation of goods between depots and customers by
means of a fleet of vehicles. The solution of a VRP determines
which customers are served by each vehicle and which routes
the vehicles should follow in order to minimize transportation
costs. In VRPs with profits [ 16] a profit or reward is associated
with each customer and the aim is maximizing the total
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collected reward. A time limit is imposed to each route, such
that some customers may be left unvisited. A solution to
VRPs with profits thus also involves a selection of customers
to be served. Models of VRPs with profits include the Multi-
ple Tour Maximum Collection Problem [7] also known as the
Team Orienteering Problem (TOP) [9].

The TOP has been the starting point of many planning
models for complex multi-agent missions, such as surveil-
lance [37], disaster relief with unmanned aerial vehicles [53],
underwater inspection [49], and precision irrigation in agri-
culture [48]. Complex variants of TOP, inspired by real-world
applications, have been proposed, such as grouping of cus-
tomers [50], split service [2], curvature-constrained vehi-
cles [41], time-dependent [51], and time-varying profits [34].
Some works combine aspects from scheduling problems [8],
[25], [32], [43] such as temporal dependencies between
customers/tasks.

Although our modeling approach leverages the works
described above, we consider several aspects that are moti-
vated by real-world applications, and which have not previ-
ously been studied in-depth. Among these we address the
integration of scheduling decisions into the routing prob-
lem, rewards dependent upon decidable service time, and
strong inter-dependencies between vehicles/agents. All these
aspects represent new challenges for VRPs [15].

In the robotics domain, multi-robot task allocation
(MRTA) problems address scenarios similar to those con-
sidered in VRPs. However, considered assumptions, goals,
and constraints are usually slightly different, accounting for
a number of dynamic and uncertain aspects. A seminal tax-
onomy of MRTA problems was defined in [23], showing
the relations with mathematical optimization models such as
vehicle routing, assignment, and set problems. The taxonomy
was extended in [31] to characterize interrelated utilities and
constraints, and in [39] to categorize the constraints between
the schedules of the robots.

These categorizations have provided a way to formal-
ize complex MRTA scenarios, and have also revealed the
NP-hard nature of MRTA problems. As a result, finding
computationally-affordable solution approaches providing
performance guarantees is inherently challenging when the
scenario is realistically complex. Nevertheless, the use of
optimization formulations is a sound approach to the solution
of MRTA problems when formal guarantees are expected.
Notable examples include [30], where a MILP formulation
for a multi-robot coordination problem with temporal inter-
task constraints is provided and tackled using a generic
solver. In [32] a similar problem has been modeled using a set
partitioning formulation and solved using a branch-and-price.
The drawback of these approaches is the lack of scalability,
as well as the difficulty to formalize complex scenarios.

To overcome these limitations, the use of agent-based
models and of heuristics, such as in [25], [41], [47], [52],
can be of great help to tackle complex and large prob-
lems. Among these works, Gombolay et al. [25] devel-
oped Tercio, a centralized multi-agent task assignment and
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scheduling algorithm for coordination problems with tem-
porospatial constraints. They combined a heuristic task
sequencer with a MILP solver to compute multi-agent
mission plans that satisfy precedence and temporal and
spatial-proximity constraints. The most distinctive charac-
teristic of Tercio is the decomposition of the problem into
task assignment (tackled with a MILP solver) and task rout-
ing and scheduling (tackled with a heuristic). The authors
empirically showed that the Tercio achieves results close to
the optimal for real-world problems, providing better-quality
solutions than prior state-of-the-art techniques. However,
Tercio, as well as most of the aforementioned agent-based
approaches, does not provide any formal guarantees for solu-
tion quality.

MILP-based formulations and solutions have been pre-
dominantly used in multi-robot task allocation problems [3],
[5], [12], [32], [33], Although these models are computation-
ally hard to solve to optimality, they are particularly attractive
due the wide availability of powerful solvers with anytime
property: solutions are progressively improved, and sub-
optimal solutions with quality guarantees can be obtained
at any point in time before the solver finds the optimal
one [32]. Furthermore, heuristics and meta-heuristics can be
coupled with MILP solvers to handle large problem instances
and to improve the computational efficiency of the solution
method. For instance, meta-heuristics have been proved to
be successful at tackling problems that involve the routing of
multiple agents such as Vehicle Routing problems [26]. In this
work we follow this direction, and consider a mathemati-
cal optimization framework, precisely because it can enjoy
anytime properties even when using standard solvers (based
on various branch-and-bound variants). We also propose two
solution algorithms: one exact method and one heuristic,
in the form of a matheuristic. Both approaches deal with
the computational complexity, improve the scalability of the
solution approach, and can flexibly accommodate the addi-
tion / dropping of operational constraints. To the best of our
knowledge, this is the first work that proposes matheuristics
for multi-robot task allocation problems.

Most of previous MRTA works have been proposed under
the restrictive assumptions that tasks are atomic proce-
dures [11], [30], [42], [44], [45] and require uninterrupted
agent effort. In this work we remove these assumptions to
allow the computation of — possibly more efficient — solu-
tions in which tasks are accomplished in an incremental
manner over disjoint periods of time during which different
agents can devote some effort into them. To the best of our
knowledge this is the first work that effectively addresses the
issue of non-atomic tasks and that deals with the problem of
simultaneously defining task allocation and task schedules
with spatio-temporal dependencies. Furthermore, we show
the problem is NP-hard even if all tasks are non-atomic.

To tackle scalability issues, a number of MRTA works have
proposed distributed approaches. Market-based methods [4],
[14], [38] rely on negotiation techniques (e.g., auctions)
and usually have both centralized and distributed elements,
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hence requiring explicit coordination among the agents
(e.g., to simultaneously engage in the auctioning phase man-
aged by an auctioneer agent). Alternatively, swarm intel-
ligence methods rely on self-organized behaviors and are
usually fully distributed and decentralized [6], hence requir-
ing no explicit coordination or communication among the
agents. However, this ease of design comes at the expenses of
performance. In between explicit coordination and no coor-
dination/communication is implicit coordination, which is a
flexible way to deal with loosely-coupled missions [28]. It is
achieved by having each agent, independently, computing
a (global) solution utilizing a replica of a centralized planner.
In this work we present both a centralized and a decentralized
scheme for mission planning. The latter is designed after
implicit coordination. It is aimed at minimizing computa-
tional and communication costs for individual agents and,
at the same time, minimizing the impact of the loss of coor-
dination due to the decentralization. We show that implicit
coordination is effective in decentralizing the solution of the
STASP-HMR and in providing scalability (of computations
and communications) while incurring in a relatively small
loss compared to a centralized architecture. Using the decen-
tralized scheme we show that frequent online replanning to
adapt to mission evolution is computationally feasible and
effective.

lIl. A MODEL FOR COOPERATIVE MISSION PLANNING
WITH HETEROGENEOUS TEAMS

A mission is defined as a set 7 of spatially distributed,
location-dependent tasks. We assume that the tasks in the
set 7 are the result of a given decomposition. A task cor-
responds to the execution of a particular action at a specific
location (or portion) of the environment.? Tasks can be non-
atomic, enabling the possibility of being completed by multi-
ple agents, each providing individual contributions over time.

A set of resources A (mobile agents) is available for the
mission. Each agent can perform the different tasks to some
extent (including the case where an agent is not suited to
deal with a task) and with an agent-specific time efficiency.
An agent can only deal with one task at-a-time. Moving
between tasks/locations usually incurs into a traveling cost.
We look at tasks as requests to be serviced, and at the agents
as the entities with the capabilities to service these requests.
We assume that the mapping defining the time efficiency for
each (agent, task) pair is available.

The two different mission planning objectives that we
consider in this work are: (i) maximizing team performance
given a limited time budget, and (ii) minimizing the time
required to complete all the tasks. Henceforth, we will focus
on the former because it represents more realistic scenarios.
Moreover, in dynamic environments, it is suitable for imple-
menting mission replanning, as described later in Section IX.
Nevertheless, given that the latter mission objective is more
common in the literature, we consider it to compare our

3Under this definition, tasks can also be seen as a pair (action, location)
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solution approach against state-of-the-art mission planning
algorithms in Section XI-F.

In the time-budgeted problem, the team performance is
defined in terms of the utility collected by the team during
the time budget T. For each task i € T, we define a reward
value R; that quantifies the utility of servicing the task for
the mission. The mission utility is defined as an additive,
undiscounted function of these rewards. Note that, given the
limited time budget, not necessarily all tasks can be dealt with
(or brought to completion). Task rewards can also be seen as
a way to prioritize the service provided by the agents.

The goal of mission planning consists in maximizing the
mission utility by jointly solving the following sub-problems.

o Task selection: select a subset of tasks to perform given
the time budget and the resources available in the team;

o Agent task allocation: assign the selected tasks to spe-
cific agents within the team, based on their current status
and their efficiency dealing with the tasks;

o Task routing: for each agent, define the sequence for
dealing with the assigned tasks and, therefore, for mov-
ing (with a cost) from one spatial location to another;

o Time scheduling: appoint the duration of the services
provided to each one of the selected tasks by each agent.

In the rest of this section, we detail the concepts that
compose this core model for mission planning and introduce
the notation that is used in the rest of the paper.

A. TASK GRAPH AND TIME STEPS

Tasks in set 7 are not necessarily spatially disjoint, and
we assume there are no temporal dependencies related to
the tasks (e.g., execution time-windows, or deadlines). The
spatial layout is captured by a traversability graph G =
(T, E) where E contains an arc (i, j) if task j can be executed
right after task i. The graph G imposes constraints over the
sequences of tasks that can be executed. This is, for instance,
the case when some tasks cannot be designated immediately
after others, e.g., because they are very distant from each
other, or when specific tasks must be serviced immediately
before servicing others.

All aspects concerning time (i.e., traveling, task servic-
ing) are discrete: the time range [0, T'] of the time bud-
get is uniformly discretized into a sequence of intervals of
length Ar. Therefore, agents only spend an integral number
of time steps servicing a task or switching from one task to
another.

B. TASK EFFICIENCY MODELS AND COMPLETION MAP
The diversity in the agent team A is captured through rask
efficiency models that, given a € A and i € 7T, define
the efficiency (i.e., amount of work accomplished over time)
with which agent a services task i. The intuition is that any
progress in the completion of a task depends on the time spent
on it. For a given task i, we say that agent a is more efficient
than agent b if, devoting the same amount of time to task i, a
would complete more of i’s workload.

We assume that task efficiency models are known for each
agent. We consider linear task efficiency models, represented
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by performance functions g : T +> [0, 1]. The value of ¢ (i)
can be seen as the rate at which the workload of task i € T
decreases over time when agent k € A is executing it. These
values are normalized with respect to the initial workload
of the tasks. We also assume that the efficiency models are
additive: when agents A’ € A work simultaneously on the
same task i for ¢ time steps, the decrease in workload of i is
equal to D ;4 k(D1

Given the non-atomicity of the tasks, the completion map
C : T — [0, 1] is used to express the fractional residual
workload of each task. C identifies the current completion
level of tasks whose workload has been partially addressed
so far. For instance, a value of C(i) = 0 indicates that task
i has already been completed in the past, and therefore no
further effort from the agents is required. If an agent attempts
to further deal with a completed task, no additional reward is
provided, which will amount to a waste of time and resources.
Servicing p - 100 percent of the workload of task i decreases
its required completion C(7) by p and provides a partial utility
of pR;.

C. SPATIAL TASK ALLOCATION AND SCHEDULING
PROBLEM IN HETEROGENEOUS MULTI-ROBOT

TEAMS (STASP-HMR)

Based on the above concepts and assumptions, the spatial
task allocation and scheduling problem in heterogeneous
multi-robot teams, or STASP-HMR in short, is formally
stated as follows. Given a set A of heterogeneous agents,
characterized by their task performance functions ¢, a set of
assignable tasks T, a traversability graph G, a set of initially
accessible tasks, and a given limited time budget, or mission
time span, 7, the STASP-HMR consists in determining a
mission plan — joint plans for the activities of the agents in
the environment — that maximizes a mission utility as the
sum of all gathered rewards. Note that, as pointed out at the
beginning of this section, a companion definition can be given
for the case when the mission time is unconstrained, such that
the goal is to minimize the time cost for completing all tasks.
We will come back to this formulation in Section XI-F.

A solution to the STASP-HMR is a mission plan that is
represented by a set of tasks ag, task routes py, and schedules
s; for each agent k in team A. We denote a mission plan
as P = {Pr | k € A}, where P, = < ak, pr, Sk >
denotes the plan (i.e., assigned tasks, route, and schedule)
corresponding to agent k. The sets ay C 7 indicate the tasks
that are assigned to agent k. Each route py is the sequencing
of tasks ay that is valid path in G. Schedules s : a; — N are
time assignments that define the total amount of time each of
the selected tasks will receive. Note that due to the limited
time budget, not all tasks may be performed: a mission plan
implicitly defines a selection | J; 4 ax € 7 among the tasks.
All routes py must start with a task that belongs to the set 7o
of initially accessible tasks (e.g., the locations of mission’s
control centers). We further assume that a task cannot appear
more than once on a single route. This assumption corre-
sponds to the sub-tour elimination constraint in VRPs, which
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TABLE 1. Summary of notation.

Element | Description

T Tasks composing a mission

To C T Initial tasks

R; Reward for task ¢ € T

G Traversability graph (7, E)

A Agents

P A mission plan

Pk Plan corresponding to agent k € A
ag Tasks assigned to Py,

Pk Sequence of tasks belonging to Py,
Sk Schedules corresponding to Py,
C(i) Completion level of task i € T
Ap Length of time interval

T Mission time span

oK () Performance of agent k € A in executing task s € T

is fully justified when traveling costs among tasks satisfy the
triangle inequality.

Fig. 1 shows an example plan for 3 agents and 16 tasks
located on a rectangular grid. Here tasks correspond to grid
cells and we assume that agents can only move between
adjacent cells (eight-connected grid) without incurring in
traveling costs. Since in this example each task is associated
to a unique cell, we denote tasks as 7;;, where 0 < i, j < 4
indicate, respectively, the column and row of the cell of the
task in the grid. Columns are numbered from left to right and
rows from bottom to top. Hence tqy is the bottom-left-corner
cell. The set of initial tasks 7y contains 7oy and its adjacent
tasks. A mission plan is defined for a time budget of T =
5 mission intervals with the following assignments: a; =
{700, T01, T11, T21, T30}, @2 = {711, T02, T13, T22, T31}, A3 =
{10, 721, 732, 733}, and the following routes: p; = (1990 —
o1 —> TI1 —> 21 —> T30), p2 = (T11 = Tz —> T3 —>
T — 131), p3 = (T10 — T21 — T3 — 133), for agents 1,
2, and 3, respectively. Here the schedules of all agents allo-
cate one time unit to all tasks with the sole exception of
710, Which is assigned to agent 3 for two mission intervals.
Initially, all tasks require full service: C(tr) = 1, Vt. The
execution of the mission plan decreases the completion map
as shown in the bottom of the figure. For instance, task 7 is
completed by agent 1, and task 717 is completed after being
serviced by agents 1 and 2. Note that some of the tasks do
not receive any service (e.g., 7g3), while others are completed
(e.g., To0), or partially completed (e.g., t3g). Assuming uni-
form task rewards R; = 1, the mission utility is equiva-
lent to total decrease of workload of the entire set of tasks:

Yo (1 = C(D)R; = 10.

IV. COMPUTATIONAL COMPLEXITY OF STASP-HMR
The stated STASP-HMR problem is NP-hard, even in the
restricted case when all tasks are non-atomic. The formal
proof of this core result is given in the rest of this section.
We only consider the single agent case, the complexity
result of the multiple agent problem follows from this result.
As an intermediate step in our proof, we first show that a
variant of the STASP-HMR that considers all tasks as atomic
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N  AcenT1 B

AGENT 2 i

AGENT 3

o@—*@

1.0 1.0 1.0 1.0

1.0 [1.0 |10 |10

Initial Cy, :

Final C,, :

1.0 [1.0 |10 |10

00 00 00 0.0

0.0 0.0 .

10 |1.0 [1.0 |10

FIGURE 1. Example plan for 3 agents. The mission is composed

of 16 tasks arranged on a rectangular grid. All agents start from the
bottom left corner of the area and T = 5. On the top, the performance
functions ¢y for each agent. Paths are depicted in the left of the middle
row of the figure, while schedules are depicted as a timeline in the right.
On the bottom, the initial (left), and final (right) completion maps.

procedures is NP-hard. Finally, this result is used to show that
the STASP-HMR is at least as hard as its atomic variant.

Let W(r) be the amount of time it takes to complete a
task 7 estimated from the performance function ¢(t). The
STASP-HMR with atomic tasks, STASP-HMR-AT in short,
imposes the restriction the any plan that includes a task T must
assign a time equal to W(r).

To prove the NP-hardness of the STASP-HMR-AT we
reduce from the Partition Problem [22], in particular the
2-PARTITION Problem. Given a set of positive integers V =
{vi,v2,...,v,}, with Zwev v; = 2A, the 2-PARTITION
problem aims at finding a partition of V into two sets
Vi,Va C Vsuchthat 30y vi = 3, cy, vj = A or deter-
mining that such partition does not exists. From an instance
of 2-PARTITION 7, we define an instance 7’ of the STASP-
HMR-AT as follows. First, define two sets 77, 72, each con-
sisting of n dummy tasks, where each task corresponds to one
element in V. Intuitively, tasks in 71 = {r11, 712, - - -, T1n}
and 7> = {121, 122, ..., Ton} are used to indicate whether
an element in V belongs to the set Vi or V. When 1y; is
included in a plan, then v; belongs to Vi. Similarly for 1o;.
Let M be an integer greater than 2A. We let R;, = M — v;,
and R,,, = M, whereas completion times W(ty;) = M, and
W(t2;) = M +v;. The traversability graph G is acyclic and has
a level structure, where each level i contains tasks t1; and 1;.
The first level contains tasks 71; and 7, which are source
vertices of the graph and also constitute the set of initial
tasks 7o. We connect each pair of consecutive levels as shown
in Fig. 2. Lastly, we set the mission time span T = nM + A.
Before we prove that a solution to 7' yields a solution to 7,
we introduce and prove the following lemmas.
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FIGURE 2. DAG construction to define the traversability graph that
reduces a 2-PARTITION instance to an instance of the STASP-HMR-AT.

Lemma 1: Let T/ € Ty and T) < T, be the subset of
tasks that are included in the optimal solution to J'. Then
T/ +1T =1V =n

Proof: We note that, given the way G is constructed and
M > 2A, the total reward of any plan that reaches level /
in G is always greater or equal to (! — 1)M and less or equal
to /M. As aresult, any plan of length [ provides higher reward
than any plan of length / — 1. Now let us consider the plan
P with 7'1’ = 7| that reaches the n-th level. Clearly, P is
always feasible for T = nM + A, and |7]| = n because its
path reaches the last level of G. Furthermore, we note that the
reward provided by P is equal to nM — 2A. Therefore, any
plan with |7/ 4 |7,| < n cannot be an optimal solution to
J' because there always exists P with | 7/| 4|7, | = n that is
feasible, and has a greater value. O

Lemma 2: Let T{ € Ty and T] S T be the subset of
tasks that are included in the optimal solution to [J'. Then
211167—1/ Vi + ZTZI-G'E/ Vi = 2A.

Proof: Tt follows immediately from Lemma 1 that, given
the way G is constructed, any optimal solution must reach the
last level of G. As a result, the optimal solution to 7' involves
n tasks and must include either ty; or 1p; for all v;. O

Lemma 3: Let T| € Ty and T] S T be the subset of
tasks that are included in an optimal solution to J'. Then,
Z'L'Zielrz/ vi < A

Proof: Note that the time span of the optimal solu-
tion to J’ is defined as T(j/) ZT“ETI/W(rU) +
Zrz;eTz’ W (12;). From Lemma 1 it follows that T (j’) <
nM + ZmeTz’ vi. Since T = nM + A, it follows that
Z‘[z,‘E’TZ, vi<A O

Lemma4: Let T € Ty and T] S T be the subset of
tasks that are included in an optimal solution to J'. Then,
the optimal value is bounded by nM — A.

Proof: Note that the optimal value of [’ can be
expressed as OPT (J') = Zn,-eT{ Ry + 272157; Ry,;. From
Lemma 1 it follows that OPT (J') = (I7]|+|T,)M —
ZT“ 7y Vi From Lemma 2 and Lemma 3, it then follows that
OPT(j’)an—A. |

Using the previous lemmas, we now prove that the STASP-
HMR-AT is NP-hard.

Theorem 1: The STASP-HMR-AT is NP-hard.

Proof: We show that the instance 7' of the STASP-
HMR-AT described above has a solution with value equal to
nM — A iff the instance J of 2-PARTITION has a solution.

It is apparent that if OPT(J) = nM-A =
(|7-]/| + |'T2/|)M Zrl,-ETI/ v; then, by Lemma 1,

VOLUME 9, 2021



E. Feo-Flushing et al.: Spatially-Distributed Missions With Heterogeneous Multi-Robot Teams

IEEE Access

ZrueT{ v; = A. It follows from Lemma 2 that ZmeTz’ v =
A, and therefore we have found a perfect partition V| = 7'1’,
Vy = 'Tz/

Conversely, if there exists a perfect partition Vi, V, then a
plan with 7/ = V; and 7, = V2, is feasible and has a value
equal to nM — A, which is equal to the upper bound given by
Lemma 4. Thus, that plan is also optimal. 0

Theorem 2: The STASP-HMR is NP-hard.

Proof: For any problem instance K of the STASP-HMR-
AT, we can create an instance K’ of the STASP-HMR such
that a solution to K can be derived from a solution to K'.

Let T = {1, 12, ..., 7y77} be the set of tasks of K. Let
T = Uierltit. ... tiwg} be the set of tasks of K’ that
includes W(t;) copies of each task 7; € 7. Each t;; represents
a fraction of 7; that can be completed in a single time unit.
For 7;;, we set a reward equal to zero when j < W(t;), and
equal to Ry, whenj = W(z;). We set ¢(t;) = 1forall 7j; € 7.
Let G be the traversability graph of the STASP-HMR-AT
instance. We define G’ for K’ that enforces the agent to either
skip task ; or be assigned W(t;) time units to it. This is done
by defining arcs (r,-j, r,-(j+1)), forall 1 <j < W(z). For all
(ti, ) € G, we define an arc (TiW(r,-)’ rkl). Fig. 3 illustrates

the idea.
(7} [=] (%]

W(n) =4 W(n) =3 W(r) =5 T31 32 733 T34 T35

FIGURE 3. Example of traversability graph that reduces STASP-HMR-AT to
an instance of the STASP-HMR. Each of the tasks z; on the left instance is
translated into W(z;) tasks connected in series.

In order to prove that a solution to K’ yields a solution to K
we consider an injective function that maps the solution space
of K’ to the solution space of /C, First, let us distinguish two
types of plans in K': (a) plans that include all the copies of all
the tasks involved such that all tasks included in the plan are
completed, and (b) plans in which the last task t;; is different
from Tiw(;) — i.e., the last task in the plan’s sequence is
not completed. Plans of type (a) have an apparent equivalent
plan in K due to the atomic condition. Any plan of type
(b) is equivalent — in terms of reward — to a plan in which
all the fragments of the last task are removed, and after this
modification, we obtain a plan of type (a) that is contained
in K. Clearly, each P’ in the solution space of X' provides
the same reward and has the same time span as its mapped
plan P in the solution space of K. Furthermore, the range of
the mapping function is the entire solution space of K. This
shows that the STASP-HMR is at least as hard as STASP-
HMR-AT, and by Theorem 1, STASP-HMR is NP-hard. [

V. MIXED-INTEGER LINEAR (MILP) FORMULATION OF
STASP-HMR

In this section, we formulate the STASP-HMR as
a MILP. Such a formulation brings important advantages.
First, the mission planning problem can be solved to
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optimality with formal guarantees using standard solvers.
Second, by adding or removing constraints or modifying the
objective the formulation can be easily adapted to deal with
different scenarios. Furthermore, MILP solvers have anytime
properties: solutions are progressively and monotonically
improved over time and can be retrieved with formal error
bounds on optimality based on the MIP gap. The formulation
is as follows:

maximize »  Ri®; 1)
€T
subject to Z xoe =1 VkeA 2)
0,)eE
Y xk=1 VkeA 3
(i,0)eE
Z Xijk = Z Xjik =Yk VYkeA jeT
(i,j)eE G.i)eE
4)
tic +wik—tix < (1 — x5 )T Vk €A, (i,)) € E
i£0, j£0 Q)
yik < tic, wik < Ty Vk €A, ieT (6)
O < Y wap() VieT @
keA
0<®,<C@l VYieT 8)
tic, wik €N, yir €{0,1} VkeA, ieT (9
xjk €1{0,1} Vke€A, (i,))eE (10)

The objective function (1) represents the utility of a mis-
sion plan. Itis computed as the sum of the rewards R; provided
by each task i weighted by its workload reduction ®; achieved
by the plan. The continuous variables ®; range from 0 (task
will be untouched) to C (task will be fully serviced). In order
to simplify the formulation, we introduce a dummy task
(denoted by 0) that represents the starting point and ending
point of the agent paths. In this way, the problem of deter-
mining an elementary path p; (i.e., a feasible sequence of
tasks) translates into one of finding a circuit, starting and
ending at 0. To this end, the traversability graph is extended
with arcs from 0 to each of the initially accessible tasks
in 7y, and from all elements in 7 to the dummy task O.
Constraints (2-4) ensure path continuity. Constraints (5) are
derived from the well-known Miller-Tucker-Zemlin sub-tour
elimination constraints [36] that eliminate sub-tours and,
together with (6), define the bounds on the variables #;; and
wir based on time budget T'. Lastly, variables ®; denote the
total time that agents commit to service task i. The value of
®; is equal to rnax(zke A Wik (i), C(i)), that translates into
constraints (7-8).

VI. MANAGEMENT OF SPATIO-TEMPORAL RELATIONS

The MILP formulation presented in the previous section
provides a basic model for STASP-HMR scenarios. However,
in the spatially-distributed missions that we are considering,
a mission plan defines the trajectories that the agents will

67333



IEEE Access

E. Feo-Flushing et al.: Spatially-Distributed Missions With Heterogeneous Multi-Robot Teams

follow and consequently has a direct effect over agent proxim-
ity. Depending on the application domain, physical proximity
among agents during the mission can have a major impact
on a real-world mission deployment. Agent proximity can
be exploited in various ways or, in some situations, shall be
avoided. For instance, in a search and rescue mission, agent
proximity can play a core role in the following interaction
scenarios:

o Augmentation: a human rescuer and a robot that are con-
currently exploring close-by areas can share real-time
video streams to augment each other’s views.

o Safety: at night, human agents searching in the wilder-
ness are safer if they stay relatively close to each other.

o Interference: air-scent dogs might get distracted by the
nearby presence of other teammates or dogs.

o Networking: in areas not covered by infrastructure net-
working, data can be transmitted in a multi-hop way
using teammates in radio range.

It is clear that explicitly accounting for these types of inter-
actions during planning can promote or avoid the happening
of the situations described above. To this end, we extend
the STASP-HMR with a general strategic framework to
consider spatial proximity between groups of agents during
planning. More specifically, we introduce spatio-temporal
directives, henceforth also referred to as directives, that can be
used to impose minimum and maximum separation distances
between groups of agents in the mission plans.

A. SPATIO-TEMPORAL DIRECTIVES: COALITION,
INTERFERENCE, NETWORK, AND SPARSITY

Let Aj, A2 € A be two subsets of agents. With the spatio-
temporal directives we are interested in controlling their dis-
tances. With ®} , and W} , we indicate, respectively,
the minimum distance and the maximum distance between
the agents in A and A, at a time ¢. These distances change
over time depending on the location of the agents in the two
sets. Fig. 4 illustrates ® and W’ given the deployment of
two groups of agents A; and Aj, depicted in blue and red
respectively, at an arbitrary point in time 7.

FIGURE 4. lllustrative example of ©f and wf.

A spatio-temporal directive establishes a desired lower or
upper bound to variables ®' or W’ at a specific time step ¢.
Multiple directives can be required simultaneously. A set of
directives can be designed to enforce or promote proximity
relations over a time interval, or at regular intervals. T denotes
the set of time steps at which at least one directive is defined.
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Setting an upper bound to W, results in making the agents
in A and in A, staying within a bounded maximal distance.
The lower the bound, the closer the groups will be. This
is useful to promote collaborative behaviors between two
groups of agents, or within one group of agents, by keep-
ing them close to each other. Therefore, we refer to these
directives as coalition directives, and are denoted as S..
Instead, if we set an upper bound to ®F, there will be at
least two agents, one per group, that are within the spec-
ified distance. For instance, this bound can represent the
communication range of the wireless network used by the
agents. Thus, these directives can enable data exchange when
the agents communicate through a wireless ad hoc network.
We refer to them as network directives, and denote them
as By.

Regarding lower bounds, directives related to ©' aim at
establishing a certain minimum separation distance between
two groups of agents. In some domains, these directives can
be useful to prevent the agents to interfere with each other
while they execute their tasks, or to avoid dangerous situa-
tions, and undesirable events that are likely to occur when
agents get too close to each other. These directives are called
interference-avoidance directives and are denoted as f;.
Finally, the sparsity directives, are those where W' is required
to be greater than a certain value. Their effect is that of spread-
ing the groups over larger areas. These directives are denoted

as fs.

B. MILP FORMULATION OF DIRECTIVES

The formulation of the above directives and their inclusion in
the MILP require three steps to adapt the basic formulation
given in 1-10. First, we need to introduce time-indexed vari-
ables to represent the location of any agent at a particular time
step. Next, based on the location of the agents, we define a set
of variables that represent their distances. Finally, we define
a set of binary variables — one per each directive — that take
a value of one if the directive holds in the resulting mission
plan, zero otherwise. In the following, we show how these
variables are defined and included in the MILP to promote or
enforce directives.

1) TIME-INDEXED MODEL

Let y,, be binary time-indexed helper variables that take
value 1 iff agent k is assigned to taski € 7 attime step 7 € T.
We want to enforce yi, = 1 < (fix <t < tix + wir). This
translates into the following set of linear constraints:

(T—0)yy +ta <T VkeA,ieT,teT, (11)
t+T+ Dy =T <tu+wgx VkeA
ieT,teT, (12)

1 VkeA, teT, (13)

Zyﬁk

i€T
Zy;k = Ty
t

yh €{0,1} VkeAieT,teT. (15)

VkeA,ieT, (14)
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2) DISTANCE FORMULATIONS

We propose two alternative formulations to define real-valued
variables dj, that represent the distance between two agents
k and [ at time ¢, One formulation relies on user-supplied
Cartesian positions of each task, that are used to approximate
d}, to the Euclidean distance between k and [. The other
formulation assumes that distances between each pair of tasks
are given as input parameters, without any assumptions or
restrictions on how these distances are defined.

The two formulations differ significantly in the number of
additional constraints that they involve. The number of con-
straints has a direct impact on their computational complexity
as it will be shown later. Also note that the first formulation
assumes that tasks are embedded in an Euclidean space while
the second formulation relaxes this assumption.

a: EUCLIDEAN-BASED FORMULATION

In the Euclidean-based formulation, each task i is associated
to a real-valued vector parameter o; = [o0;] 0;2 0;3] that
defines its 3D position in the Euclidean space. Using the
Euclidean positions, variables dlil are defined as an approx-
imation of the Euclidean distance between the locations of
the tasks that agents k and / are assigned to at time ¢.

The Euclidean-based formulation requires an additional set
of helper vector variables p; € R3, where p, = o; iff node k
is assigned to task i at time ¢. Variables pi are defined by the
linear constraints

p; =)0 VkeA, ieT,teT. (16)
Using variables p’, variables dj; are defined:

di = |p —p)| VkileA teT. (17)

Different methods can be used to linearize (17). For
instance, [1] considers the use of a collection of tangential
planes. Here we follow the method that we have devel-
oped in [18], where we use linear regression based on
linear least-squares fitting. Following this method, we are
able to model (17) using a number of linear constraints of
order |A|?|T|.

b: PARAMETER-BASED FORMULATION

In the parameter-based formulation, the user inputs the dis-
tance between each pair of tasks using a real-valued parame-
ters r;; that indicate the distance between the location of each
pair of tasks i, j € 7. The formulation of dj, is obtained using
the following linear constraints:

bij <y§k +y,t'1> — Vi <dy Vk.1€A,
i,jeT,teT, (18)
0<dy Vk,leA teT. (19)
Note that the parameter-based formulation involves a number
of constraints of order |A|?|7|?|T|, that is considerably larger

than the number of constraints induced by the Euclidean-
based. Thus the increase of flexibility of the parameter-based
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formulation comes at the cost of significant computational
overhead.

3) FORMULATION OF DIRECTIVES
Now that we have introduced variables to time index agent
steps and to express distances, we can proceed to formulate
the linear constrains that include spatio-temporal directives
in the basic MILP. We need first to represent the distance
variables @21 A and \I/f\l Ay> and then we need to set binary
indicator variables to ensure the satisfaction of the desired
bounds on the distances.

Varia.bles ©), 4, and W}, are defined using the following
constraints:

e, , = min  d!, VieT, 20
A2 T ke lear kil M 20)
v = max d, VreT. 21
A2 T en ledr ket T @D

Constraints (20-21), although not linear, can be easily lin-
earized using auxiliary variables and linear constraints. Due
to space limitations, these linear constraints are omitted and
we refer the interested reader to [20].

The binary indicator variable associated to a spatio-temporal
directive B with bound d is denoted with ng. The variable
takes value 1 if the directive B is satisfied in the current
solution, and O otherwise.

We can now formulate the different types of directives
using the introduced variables and differentiating among the
directives based on the use of the distance variables.

The case of coalition directives is modeled through the
following linear constraint:

WA]AZ <D(l - nﬂ) +C_1 VB € B, (22)

where D is a large constant (e.g., maximum possible distance
between any pair of agents) and d is the bound on the distance
that is considered in the directive.

Similar constraints are used for other types of directives.
For network directives:

Ohs, <D(l—npg)+d VB € PBu (23)
for interference-avoidance directives:

—D(1—ng)+d <0} ,, VBEps (24)
and sparsity directives

—D(1—ng)+d <V} ,, VBEeBs (25)

4) USING THE DIRECTIVES
Using variables ng, directives can be included in the form of
hard constraints, such that a mission plan is feasible only if it
is compliant with the directives, and a solution approach must
exclude any plan that violates them. Alternatively, directives
can be treated as soft constraints adding a penalty (or a
reward) in the objective to avoid (or promote) plans that
violate (or comply) with the directives.

One advantage of using hard constraints is that in some
cases they can speed-up finding a solution since the size of
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the search space gets reduced. However, they can also lead
to infeasible problems, or making the search for a feasible
solution more challenging. Instead, when soft constraints are
used, it is relatively easy to provide an initial feasible solution,
and use this solution to find other —better— feasible solutions.
Yet, the objective function of the MILP can become complex,
and may require normalization of some terms (i.e., mission
utility) and the definition of relative weights among the soft
constraints [20].

VII. SOLUTION OF STASP-HMR: A GA MATHEURISTIC

In Section IV we have formally shown that, even in its
basic form, the STASP-HMR is NP-hard. This poses inher-
ent challenges in practical settings. Furthermore, in typi-
cal applications of the STASP-HMR, the time available for
computing and issuing a mission plan is usually quite strict.
Online replanning might also be needed during the actual
development of the mission, in the face of unexpected events
and issues. All these factors ask for an effective and scal-
able methodology for tackling the solution of STASP-HMR
instances.

To cope with these challenges, in this section we propose
a heuristic solution method based on a genetic algorithm
embedding mathematical programming methods. Our algo-
rithm is a combination of heuristic and MILP solvers, and it
is categorized as a matheuristic in the literature [35]. To the
best of our knowledge, our work presents the first application
of matheuristics to multi-robot missions.

Genetic algorithms (GAs) are efficient stochastic search
methods that simulate the adaptive evolution process of nat-
ural systems [24]. A GA starts from a population of individ-
uals which encode feasible solutions of the problem. Each
individual is associated to a fitness value that indicates its
goodness compared to the rest of the solutions. From the
initial population, a GA goes through a process of evaluation,
selection, crossover, mutation and replacement leading to the
next generation of individuals. The process is repeated for
a number of generations during which the best features of
parents are passed on to their offspring and thus individuals of
progressively better quality can be obtained. In the following,
we describe the design and the implementation of a GA
matheuristic for the STASP-HMR, showing how the GA is
designed and how the MILP formulation is used to solve
specific sub-problems inside the genetic operators.

A. SOLUTION REPRESENTATION

In a GA, each individual solution is associated to a chromo-
some, the numeric representation of a set of features (genes)
defining the individual (the genotype). A good encoding is
fundamental in a GA in order to efficiently transmit genetic
information from parents to offspring individuals. The more
efficient the encoding, the better the performance.

One distinctive feature of our proposed GA is that it
decomposes the STASP-HMR into two sub-problems: one
of deciding the sequences of tasks in a mission plan
(i.e., allocation and routing), and one of deciding how the time
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budget is spent among the selected tasks in the sequences (i.e.,
scheduling). Specifically, each member g of the population
consists of a set of elementary paths in G (one for each
agent). That is, g = {px | k € A}. The genotype g can
then be mapped onto a complete feasible (but not necessarily
optimal) solution of the STASP-HMR by defining the amount
of service time each task in the sequences receive, as long as
the total time budget is being respected.

An assessment of the quality (fitness) of g requires decod-
ing the genotype. In other words, for each g that is generated,
we need to determine schedules s; to decode the genotype
and map it to a complete mission plan (i.e., a phenotype).

B. FITNESS EVALUATION

At the core of each GA is the definition of the fitness func-
tion, that quantifies how good or bad is a candidate solution
in the population. In our case, the fitness of a genotype g
corresponds to the maximal cumulative reward that can be
obtained given that the agents follow the sequences of tasks
specified by g. However, in order to compute this value we
need to find the set of schedules {s;| k € A} that maximizes
the objective function of the STASP-HMR with the condition
sx(i) > 0 for i € ai (tasks belonging to the paths py), and
sk(@) =0fori ¢ ag.

This is equivalent to the problem of finding an optimal
service assignment for the fixed set of tasks ax, which is an
optimization problem that can be conveniently formulated as
a restricted version of the STASP-HMR as follows:

maximize ZR,-CDi (26)
ieT
subject to wir > 1Vk € A, i € ai 27
dwi=T VkeA ica (28)
keA
wix =0 VkeA, ié¢a (29)
O <Y gliwaVie T (30)
keA
0<®, <Cu@) VieT 31D
wir €N VkeA ieT (32

Constraints (27) impose the condition sz(i) > 0 for all
i € ay, ie., all tasks in the path must receive a minimal
amount of service. For clarity reasons we consider all tasks 7
in the formulation, and enforce the condition that any task
not belonging to any path is excluded from a solution by
constraints (29). The remaining constraints are the same in
the formulation for the STASP-HMR introduced in (V).

Using a MILP for fitness evaluation is convenient, not
only because it can be solved using an out-of-the-shelf
solver, but also because other model extensions such as the
spatio-temporal directives proposed in Section VI can be
considered here. The latter can be achieved by including
additional linear constraints in the above MILP formulation.
Note that this MILP is much smaller than the original one
and, if rushing for time, the anytime capabilities of the solver
can be exploited to solve the model up to a given guaranteed

VOLUME 9, 2021



E. Feo-Flushing et al.: Spatially-Distributed Missions With Heterogeneous Multi-Robot Teams

IEEE Access

approximation based on the MIP gap value. This is a clear
example of the versatility and the convenience of using the
MILP framework to formulate the STASP-HMR.

C. GENETIC OPERATORS

The design of the genetic operators, namely the mutation
and crossover operators, usually needs to be problem- and
representation-specific to obtain an effective result. Here we
propose genetic operators that are designed to achieve a good
trade-off between exploration and exploitation. The mutation
operator induces small perturbations to existing individuals,
whereas the crossover operator takes two individuals (i.e.,
the parents) and mixes their paths to obtain a new individual.

1) MUTATION OPERATOR: BEST-SUBSEQUENCE

The mutation operator, indicated with best-subsequence
mutation, aims at finding a better solution by removing or
adding only a few tasks, without altering the order of the
original ones. Intuitively, we aim at replacing each path py of
g with another path of length greater than or equal to |py| that
includes a subsequence of p; in a way to obtain an individual
with better fitness. This is a form of local search since it is
locally improving a given solution.

The best-subsequence operator is implemented using a
variation of the MILP introduced in Section V with some
restrictions on the use of certain arcs of G. Specifically,
we include the following constraints:

> xpp <M VkeA (33)
(i.J)€E}

Z Xijk < My

(i.))eE\prUE}

VkeA (34)

where Ek1 is the set of arcs (i, j) where either i or j, but
not both, belong to px, and M|, M> > 0 are user-defined
parameters of the operator. Note that the greater the values of
M and M3, the larger the deviations we can obtain through
the operator.

The resulting MILP formulation of the best-subsequence
mutation is composed of (1)-(10), (33)-(34). Similarly to
the fitness evaluation, when the spatio-temporal directives
proposed in Section VI are used, the corresponding linear
constraints must also be included into the MILP.

The best-subsequence mutation can be computationally
intensive, so its use must be regulated. We leverage the
anytime property of the MILP solver and set a maximum
computation time devoted to solving each MILP during
mutation.

Lastly, we note that there exists a tradeoff between the
values of M| and M» and the computational cost and quality
of the mutations. Larger values can lead to better mutations,
but increase the search space. When the corresponding MILP
becomes too complex, the operator may produce low quality
solutions given the limited computation time. Empirically we
observed that M1 = 2, M = 1 gives a good performance.
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2) CROSSOVER OPERATOR: MIXED-SUBSEQUENCES

Given two parent solutions, gz = {pZ | k € A} and
gm = {p{' | k € A}, the crossover operator (named mixed-
subsequences crossover) works on a constrained version of
the STASP-HMR in which every path pj in the new offspring
is composed by subsequences of the paths pz and pj'. The
genome of the offspring is determined by formulating and
solving the MILP of Section V with the addition of the linear
constraints below that restrict the paths to those that only
contain arcs that are in parents’ paths, g; and g,,:

0 if(i,))¢ptupl

Vk €A, (i,j) e E (35
1 otherwise (@) (33)

Xijk =

The offspring’s genome is the one that satisfies these con-
straints and has the highest fitness.

Similar to the mutation operation, the time devoted to solve
each MILP during crossover is limited by a certain threshold,
after which the solver returns the best solution found.

VIil. SOLUTION OF STASP-HMR: AN ANYTIME BOUNDED
OPTIMAL ALGORITHM BASED ON A SHARED
INCUMBENT ENVIRONMENT

The GA-based matheuristic introduced in the previous
section, being a heuristic, it is not (necessarily) optimal and
does not provide any formal guarantees in the degree of
optimality of the solution found. Nevertheless, it produces
high-quality solutions in a very computationally-efficient
manner and with low computational demands, specially in
terms of memory (see Section XI). In other words, it is an
effective and efficient approach to the heuristic solution of
the STASP-HMR.

Yet in some scenarios it is crucial to understand how
good the proposed solution is, for instance, by means of
bounded optimal solutions. When computational resources
for the solver are readily available (e.g., using dedicated cloud
servers), effective bounded optimal solution approaches can
be useful. In this section we build on and complement the
previous approach with a novel exact method based on the
combination of the GA-based matheuristic and a generic
MILP solver for the STASP-HMR. The method is complete
and yields bounded optimal solutions in an anytime fashion.

The solution approach consists in setting up a coopera-
tive environment, namely a shared incumbent environment
(SIE), that runs the GA-matheuristic proposed in the previous
section and a generic MILP solver over the same problem,
in parallel, interacting and continuously exchanging relevant
information. Our implementation of the SIE method runs
multiple instances of a generic MILP solver and the GA
matheuristic. These instances run simultaneously, in parallel,
solving the same problem instance. The SIE shares the best
solutions found among all the solvers.

The objective of the SIE is to help each of the run-
ning solvers in overcoming their weaknesses, resulting in a
speed-up of the overall solving process. The solution that
is ultimately obtained is retrieved from the instance of the
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MILP solver, together with its MIP gap. As a result, the SIE
provides a solution with formal guarantees in terms of the
MIP gap and, eventually, the optimal solution. The funda-
mental role of the SIE is to facilitate the exchange of solutions
between the solvers.

The SIE inherits all the properties of the solvers from which
it is composed. Since we are using an exact MILP solver
within the SIE, the proposed SIE becomes an exact solution
method that preserves the formal guarantees and anytime
properties of exact solvers and, at the same time, it is also
computationally-efficient.

Our implementation of the SIE consists of two independent
processes — one running a generic MILP solver and the other
one the GA-based matheuristic — over the same problem
instance. These processes communicate with each other using
mechanisms for inter-process communication. The cooper-
ation scheme between both solution approaches consists in
the continuous exchange of their best found solutions so far.
From the MILP solver perspective, best solutions correspond
to the best upper bounds — also known as the incumbent
solutions — which are readily available during the branch-and-
bound search. In the GA-based matheuristic, they represent
the best individuals found during evolution.

At the MILP solver side, external feasible solutions
(e.g., in the SIE, those received from the GA-matheuristic) are
injected to the solver using the API. At the GA-matheuristic
side, new solutions are introduced into the current population
at each generation.

A. IMPLEMENTATION DETAILS

The SIE is implemented using Linux sockets for inter-process
communication. The exchanged solutions consist of a list of
tuples (variable, value), for each variable used in the MILP
formulation. In the MILP solver, this list can be retrieved
using the application programming interface (API) of the
solver. In the specific case of the CPLEX software that was
used, system callbacks are used to retrieve this list every time
a new incumbent solution is found.

When a solution is received from the matheuristic, it is
passed to the MILP-search using the API. With CPLEX,
user-written callbacks are used to inject integer-feasible solu-
tions during the branch-and-cut search. Such callback func-
tions are called frequently during the search by CPLEX.

At the matheuristic side, all solutions received from the
MILP solver are temporarily stored inside a FIFO queue.
We explored two different ways to introduce these solutions
into the current population: (a) through the genetic operators,
and (b) replacing certain individuals after each generation.
After experimenting with these two strategies, we noticed that
forcefully replacing the worst genotypes with the exchanged
solutions provided the best performance in terms of solution
quality. We also discovered that it is necessary to limit the
percentage of genotypes of the same generation that can
be replaced to preserve population diversity. We empiri-
cally determined that replacing up to 10% provides a good
performance.
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In Section XI-B we demonstrate through extensive exper-
iments the effectiveness of the SIE and show that a signif-
icant performance improvement can be obtained when the
matheuristic and the generic MILP solver are combined,
compared to their use as independent solvers.

IX. ONLINE ITERATIVE REPLANNING

Despite the efficient solution approaches proposed in the
previous sections, two main challenges remain regarding the
practical applications of the STASP-HMR. First, relatively
large instances of the STASP-HMR present inherent compu-
tational challenges. In these cases, finding good approximate
solutions may require a relatively long computation time
(e.g., order of hours or even more). Secondly, although long
computation times may still be affordable in some scenarios
(e.g., when plans can be safely executed in open-loop modal-
ity), other scenarios need mission planning to be performed
iteratively in closed-loop with mission enrollment. In these
scenarios, which are indeed the most common in practical
applications, a replanning scheme must be in place to trigger
the computation of a new mission when facing new evidence
or to accommodate unexpected contingencies during execu-
tion. For instance, during a search a rescue mission, a number
of unforeseen events can naturally happen during mission
execution, causing delays, deviations, and, in general, requir-
ing to change or adapt the original plan on the spot.

We propose to tackle closed-loop scenarios by defining
both a centralized architecture and a decentralized archi-
tecture for mission planning and control. In this section
we describe the case of using a centralized architecture.
In the next section, adopting a top-down design, the central-
ized architecture is used to derive a decentralized scheme,
which brings additional advantages regarding computational
requirements and resiliency to failures.

When using a centralized architecture for closed-loop mis-
sion enrollment, the centralized mission planner begins by
computing a mission plan for all agents. Upon receiving
the plans (e.g., through a wireless communication chan-
nel), the agents start the mission. During execution, mission
updates are continually sent from the agents to the planner.
In turn, either periodically or based on the received updates,
the centralized planner triggers the computation of a new
plan, which is sent out to the agents on the field. The process
is iterated until the time budget for the mission is used fully.

In practice, the online iterative replanning is implemented
as a multi-stage, periodic, re-optimization procedure [10]
that solves a sequence of static problem instances over time
with a varying horizon length. At any single planning stage,
a horizon Ty defines how far to look ahead during planning.
Longer horizons are expected to enable a better allocation
of resources, but also increase the computational complexity
as the size of the associated problems increase. In contrast,
shorter horizons tend to be computationally affordable, but
also to make agents to reason myopically resulting into
lower-quality decisions. The chosen value Ty is used as the
T parameter in the MILP associated to the current stage.
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The described scheme is rather straightforward. In order
to address the practical issue of long computation times for
large instances, we exploit the anytime capability of our
exact approach: a time limit #,;,, is imposed for solving each
staged instance of the MILP. #,,, is a strategically defined
parameter: the larger the better, but at the same time it has to
comply with mission’s time constraints. In general, Ty and
Iplan are strategic parameters that can affect both quality and
feasibility of the mission.

The impact of and interplay between Ty and #,/4y is studied
in Section XI-E. The results show that in practice an online
replanning with reasonably good performance is obtained
with a centralized approach when the agent team is relatively
small. However, the results also indicate that the scalability
to large teams is still an issue. This justifies the need for the
decentralized architecture described in the next section.

Another parameter that has an impact on mission quality
and computational load is the frequency of replanning, that
can follow a periodic scheme or can be adaptive. Without
losing generality, we assume that the time between two
consecutive replanning stages is randomly chosen from an
interval [14, tp] with 1 <1, <t < Ty — tyjan. Whent, =1,
replanning must occur just after the agents execute the first
action of the last plan computed. When 7, = Ty — tyin,
the next replanning stage can occur at latest just before the
current mission plans expire (i.e., while agents execute their
last task assigned). In Section XI-G the choice of [7,, 7] and
its impact on performance is investigated in a number of
simulation experiments. We also refer the interested reader
to [17] for additional discussions about the choice of horizon
and replanning interval.

X. A DECENTRALIZED IMPLEMENTATION USING
ITERATIVE REPLANNING AND

IMPLICIT COORDINATION

In many applications of interest, a centralized architecture
will present many shortcomings and will not be scalable.
First, solving the MILP for the entire team might take too
long to be used for a continual online replanning. Second,
reaching out all the agents to / from the control center requires
a reliable, high-bandwidth network infrastructure that not
necessarily might be in place (e.g., after a disaster, or when
performing the mission in remote areas). Third, the use of a
control center brings an inherent weakness in terms of fault
tolerance.

To overcome the issues related to a centralized architecture,
we propose a fully distributed and decentralized architec-
ture derived in a top-down modality from the centralized
one. Each agent runs a replica of the mathematical model
and use it to plan its own actions in closed-loop modality,
based upon the knowledge acquired from information sharing
with the other agents during the course of the mission. The
designed decentralized architecture is based on the principle
of implicit coordination: while deciding their own actions,
independently, robots implicitly coordinate. Implicit coordi-
nation is regarded as a practical, flexible, and scalable way to
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tackle multi-agent missions [28]. The adopted MILP formal-
ism provides an immediate way to decentralize the problem
and the solution approach based on implicit coordination.

In the following two sub-sections we discuss how the
online iterative replanning introduced in the previous section
is implemented in a distributed and decentralized architec-
ture. The implementation leverages the use of local agent data
and the MILP formulation to compute plans that can implic-
itly coordinate the agents. We then discuss what and how dara
are exchanged among the agents in order to maximize their
local perception of the mission. Henceforth, we assume that
agents are equipped with a range-limited wireless interface
that they can use to communicate with each other using a
mobile ad hoc network. In other words, we do not assume the
presence of a global network infrastructure and we emphasize
some of the challenges that come with the lack of a global
infrastructure, e.g., how the robots coordinate their plans
with each other when a global network infrastructure is not
available.

A. SHARED KNOWLEDGE REPRESENTATION

In addition to the static information about the scenario —
which can be initially given to the agents — two types of data
need to be revised and continuously updated to let each agent
working in closed-loop interaction with mission enrollment
and, therefore, perform online, iterative replanning. First, a
local estimate of the completion map C in needed to track the
amount of service each task has received and still requires.
Second, each agent should be as aware as possible of the
scheduled future actions (i.e., current plans) of other agents,
in order to avoid overlapping actions.

To this end, agents share information about their comple-
tion map and their plans by means of incremental update
messages that are broadcast. These messages, once received
and added up all together, let other agents to maintain an
up-to-date local view of the global status of the mission.
In the case of the completion map, an incremental update
message consists of a tuple C* =< k, i, ftyar, teng > that
indicates that agent k£ has provided service to task i from
time fyqs tO teng. The updates are issued and sent out in
the wireless network by the agent just after servicing a task.
Once other agent receives a C*, it uses it to update its local
C by subtracting from it the amount of service provided by
k to i based on the knowledge of k’s efficiency function:
C@) := CW) — ox(D(Eend — tstart)/ AT

Regarding the plans, a similar approach is followed. A plan
update is a tuple < k, tgen, i, tsrart> tend, > that represents the
intention of agent k to perform task i from #g¢ to #.,4. Note
that in this case a timestamp ., is added to indicate the time
at which k expressed such intention. At any time instant z,
the plan of an agent k can be (partially) reconstructed by
considering all the received plan updates with ¢ < #g,,,. The
values of t,., allow to resolve conflicts when two or more
updates overlap. As for the completion map updates, each
plan update is uniquely identified by a sequence number and
stored in a local table.
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During the mission, agents periodically broadcast net-
work discovery messages to announce their presence to
other agents. Using these messages, each agent maintains
a list of agents from which it has received a message in a
recent time period, henceforth called the agent’s neighbor-
hood. With certain frequency, the agent randomly chooses
another agent in its neighborhood to initiate a synchronization
their lists of mission updates. The synchronization procedure
allows agents to merge their local knowledge and, in overall,
improve their local perception of the mission.

B. ITERATIVE PLAN UPDATING USING THE MILP

In the distributed architecture, mission planning is performed
iteratively, where each agent follows the scheme presented
in Section IX in an asynchronous fashion. To do so, at each
planning stage, the agent sets up a MILP using the locally
estimated completion map, and current (partial) plans of other
agents. This makes the MILP much smaller than in the cen-
tralized case. In practice, only neighborhood-level MILPs are
included and solved.

The inclusion of the local completion map C in con-
straints (8) is straightforward whereas the plan updates
received from other agents are handled in a more strategic
way. It must be noted that, since data exchange can be sparse,
an agent may become unaware of the activities of some
members of the team. Therefore, it does not make sense to
consider teammates for which no reliable information about
location and current intentions are known. Instead, we let
each agent only considering teammates from which it has
got an information update recently, e.g., at least one update
since the last replanning stage. Other agents are omitted from
current MILP until they reappear in its neighborhood.

Furthermore, it is often the case where an agent has only
partial information about plans of others. This is due to the
fact that, as explained above, plans are computed up to a
certain (rolling) time horizon Ty, such that the current plan
of some of the neighbors may be due before the Ty being
considered by the agent at any given planning stage. In these
cases, the agent must either infer the incomplete part of the
plan or let the solver optimizing it. In this work, we adopt the
former strategy to reduce the search space and consequently
the computational cost of planning. To this end, partial plans
are completed using a greedy heuristic procedure as follows.
In sequence, for each agent in the neighborhood, the planner
performs a greedy assignment of tasks with a time budget
of Ty: the next assigned task is the one that locally max-
imizes the neighbor’s reward. After the greedy completion
procedure, the plans of all neighbors are complete and used
by the planner to fix constant values the variables t;;, wj, and
x;jk for all k in the set of neighbors. As aresult, these variables
are no longer decision variables.

Restricting to the current neighborhood, and inferring and
fixing variables corresponding to neighbor agents, drastically
reduce the total number of decision variables of the MILP to
those that only define the actions of the agent doing planning.
In our tests (see Section XI-G), we noted that this leads to
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substantial computational savings and better performance.
In fact, the gain that would potentially be obtained by solving
the entire problem is diminished by the relative poor quality
of the solutions that can be computed in the limited time
budget allocated for planning.

XI. COMPUTATIONAL RESULTS

In this section we provide an experimental comparative eval-
uation of the different solution methods of the STASP-HMR,
as well as an analysis of its centralized and decentralized
implementations.

We start by defining a benchmark set that is generated to
be representative of real-world instances of STASP-HMR.
The relative performance of the solution methods is evaluated
on the benchmark based on the run-time distribution (RTD)
methodology, that serves to characterize the anytime behavior
of stochastic search algorithms for combinatorial optimiza-
tion [29]. Instead, for the decentralized implementation we
quantify the loss with respect to the equivalent centralized
implementation and we study the impact of different design
parameters. All the numerical results were obtained with an
AMD Opteron® Processor (2.0 Ghz) and the algorithms are
implemented in C++.*

A. PROBLEM INSTANCES

The benchmark set consists of random problem instances
where the locations of the tasks composing the mission are
embedded in a 2D-grid, with a one to one correspondence
between tasks and grid cells (e.g., see Fig. 1). We consider
square grids of L x L cells, with L € {5,6,8, 10, 20}.
We adopt a dimensionless space, yet we consider that robots
must move through adjacent cells: those that share at least one
vertex on the grid.

Each instance includes from 4 up to 20 agents at random
initial locations, and up to four different classes. Each agent
class is characterized by the performance in accomplish-
ing the tasks. Specifically, each instance defines four agent
classes, each one with a randomly chosen performance func-
tion ¢ with five possible performance levels for each task:
ranging from inefficient (¢ = 6.25%) up to highly efficient
(¢ £ 100%). This means that, depending on its class, a robot
may require from 1 mission step up to 16 mission steps
to complete a specific task. The total number of problem
instances in the benchmark set is 3,060.

B. PERFORMANCE COMPARISON OF THE PROPOSED
SOLUTION APPROACHES

We first compare the different solution approaches proposed
in this work, namely a generic MILP solver, the GA-based
matheuristic, and SIE. We use CPLEX®) as generic MILP
solver. We impose a time limit of one hour and a memory limit
of 2 GB to optimize a mission plan for each of the instances
using different planning horizons (4 < T < 20). Upon
reaching the limits of these computational resources, all three

4Code and problem instances are available at https://github.com/
EduardoFF/STASP-HMR
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methods return the best solution found so far. Furthermore,
during the computation of a solution we keep a record of the
quality of the best solution found in terms of mission utility.
When using SIE and CPLEX, we also retrieve the MIP gaps
over time, that quantify the estimated distance of the current
solution from the optimum. To account for the use of parallel
computing, we run each method using 2 and 4 cores. In the
SIE the number of cores is uniformly distributed over the
CPLEX and the GA-matheuristic.

The GA is initialized with a randomly-generated popula-
tion. The GA is a steady-state GA where only a percentage of
the current population (5%) is replaced by the best solutions
in the offspring. A population size of 200 is used. A tourna-
ment method is used for selecting the individuals with best
fitness from the population using a linear scaling scheme.
The selected genomes are used to generate new offspring
by the crossover operation. The crossover probability is set
to 0.9 and the mutation probability to 0.1.

We compare the algorithms using an RTD analysis as fol-
lows. Each solution method is used to solve all the benchmark
instances. From the solutions obtained for the same instance,
we take the best among them and refer to it as the target
solution. To visualize and compare the anytime behavior of
the solution methods, for each method we plot the RTD
where the x-axis represents the run-time (in seconds), and
the y-axis represents the proportion of the runs (normalized
between 0 and 1) that provided a solution whose quality is
equal to the target solution over all the benchmark. As a
result, the RTD provides the empirical cumulative probability
distribution of finding the best solution within a time bound
for the algorithm.

Numerical results are shown in Fig. 5. We note that SIE is
by far the best performing algorithm, with the GA matheuris-
tic being close in performance. Moreover, they both show
a nice anytime growth in performance, while CPLEX alone
shows a stagnation after a short while. The difference in per-
formance among the algorithms is even more evident when
using 4 cores. These results suggest that SIE is well able
to exploit the synergies between the CPLEX solver and the
GA matheuristic. We also note that, although we impose a
memory limit of 2 GB, the GA matheuristic required less than
10 MB during the entire execution, while SIE exhausted the
memory available in some of the instances.

We also consider problem instances that use spatio-
temporal directives. To this end, we randomly generated sets
of directives to be included as soft constraints. Furthermore,
we consider separately each of the formulations of distance
variables presented in Section VI-B2. In the benchmark that
uses the spatio-temporal directives, the results are different,
as shown in Fig. 6. This is due to the fact that the correspond-
ing MILPs have also different (higher) complexity. In this
case both SIE and the GA-based matheuristic have a similar
behavior and significantly outperform CPLEX. The perfor-
mance gap is more evident when using the parameter-based
formulation, showing the different complexity incurred by the
formulations.
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FIGURE 5. Run-time distribution on hard instances for GA-based
matheuristic, CPLEX, and SIE using 2 and 4 cores. The x-axis represents
the run-time (in seconds), and the y-axis represents the proportion of the
runs (normalized between 0 and 1) that provided a solution whose
quality is equal to the best solution found.
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FIGURE 6. Comparison between two different MILP formulations of
distance variables using problem instances with spatio-temporal
directives. Each instance is solved using CPLEX, the GA-based
matheuristic (MATHEU), and the SIE. The RTD shows the performance of
the solvers using each formulation.

C. THE EFFECT OF NON-ATOMICITY AND PARTIAL
FULFILLMENT OF TASKS

One aspect that differentiates our planning approach from
most of previous work is that it accommodates plans
described in terms of non-atomic tasks. This aspect is partic-
ularly relevant when a limited time budget is given. By con-
sidering non-atomic tasks, a valid solution may (i) leave some
tasks partially fulfilled by the end of the planning horizon,
and (ii) allow different agents to work on the same tasks over
disjoint time intervals. These two aspects make the solution
space larger than the case of atomic tasks, which in turn could
produce more higher quality solutions.

We use the model and its MILP formulation to analyze the
advantages of these two mechanisms. At this aim, leverag-
ing the flexibility of the MILP formulation, we define two
variants of the STASP-HMR. The first variant STASP-HMR-
AT, that was already introduced in Section IV, enforces the
atomicity of tasks. The second variant of the model (denoted
by STASP-HMR-FF) relaxes the atomicity requirements but
imposes the restriction that mission plans must fulfill the
service requirements of any tasks included in the solution.
In other words, if a task i is included in the mission plan, then
i must be brought to completion at the end of the mission
plan by the work of one or more agents. Both variants are
formulated by means of additional constraints in the MILP.

Note that the atomicity condition also implies that the
involved tasks are completely fulfilled. If we characterize the
solution space of any given problem instance of the different
variants of the STASP-HMR, the following relation holds:

STASP-HMR-AT < STASP-HMR-FF € STASP-HMR.
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Fig. 7 shows the performance, in terms of mission
completion, of optimal mission plans derived from the
STASP-HMR, and each one of its variants, considering differ-
ent number of agents and mission time spans. We consider a
total of 100 problem instances in 7 x 7 grids. For all instances,
we were able to obtain optimal solutions within one hour
time.
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FIGURE 7. Effect of non-atomicity and partial fulfillment of tasks.

In all the scenarios the performance of plans using
non-atomic tasks is significantly higher than the performance
of those with atomic tasks. This suggests that the partial
fulfillment condition enables the agents to better distribute
their effort over a larger number of tasks, and as conse-
quence, to achieve higher performance levels. These results
encourage the use of non-atomic tasks to define mission plans
whenever it is possible based on the application requirements.

D. THE VALUE OF TIME-EXTENDED TASK SCHEDULING
Next, we show the advantages of time-extended planning
with respect to a more reactive approach in which we opti-
mize the assignment of tasks using a myopic method. The
myopic method (MYOP) solves a sequence of STASP-HMR
instances with one-step look-ahead.

More specifically, for a time budget 7, MYOP is equiva-
lent to solve a sequence of problem instances (P1, ..., Pr),
each using a time horizon of 1 step. The solution of each
instance P; consists in a mission plan P; that defines a single
task assignment for time step i. After computing plan P;,
the resulting agents’ positions and coverage map serve as
input to the computation of plan P;4 .

In Fig. 8 we show the performance of mission plans
computed over the whole mission time-span (TIME-
EXTENDED) and using the MYOP approach, for differ-
ent mission timespan, and team sizes. We consider a total
of 100 problem instances in 7 x 7 grids. For all instances,
we were able to obtain optimal solutions within one hour
time using the SIE. We can observe that time-extended plans
exhibit better performance than the MYOP counterpart, and
that the performance improvement is independent of the
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FIGURE 8. Time-extended vs. MYOP approach.

length of the mission timespan. We also notice a greater
difference in performance for larger teams.

These experiments show the benefits of considering large
horizons while coordinating a mission. They also illustrate
how we can compute missions plans by solving a sequence
of problem instances with a fixed look-ahead horizon length.
We remark that the computational cost of time-extended plan-
ning increases with the length of the horizon.

E. ITERATIVE REPLANNING IN A CENTRALIZED SCHEME
In this section we perform a computational study of the cen-
tralized implementation, focusing on the replanning strategy
of Section IX. We analyze the impact on performance of time
limits for the computation of mission plans, #,.,, and length
of planning horizon Ty at each replanning stage.

We consider a mission duration of 60 time steps. Using
a team of 6 agents, we use the centralized scheme, where
the online iterative replanning is performed using different
parameters. We consider 10 problem instances. For each
mission, and at each replanning stage, we use the SIE to
obtain solutions to the mathematical models associated to
each stage. We restrict to #,,, the time allowed to the solution
approach to compute a mission plan, after which the best
mission plan found so far is retrieved and dispatched until
a subsequent replanning is done.

The simulation model that we use to execute the mission
plans assumes that no deviations occur when agents execute
their plans and a perfect communication channel between the
planner and the agents. In this way, we only focus on
the effect of the parameters of the replanning scheme over
the performance of a mission under idealistic situations when
plans are executed as expected, and perfect knowledge about
the status of the mission is provided. Nonetheless, we note
that in dynamic scenarios, replanning can be triggered at
any time, by the user, to adapt the plans to deviation in the
executions. Furthermore, different planning strategies can be
used to support the communication between the planner and
the agents. We refer the interested reader to [18], [20] for a
comprehensive discussion about connectivity-aware mission
planning.
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We consider 4 values for the planning horizon Ty €
{6, 8, 10, 12}, and 3 values for the time limit (in seconds)
imposed to the solver at each replanning stage f,i, €
{300, 600, 1200}. For each mission, we performed 5 indepen-
dent runs.

The results in Fig. 9 show the mission performance,
in terms of task completion, over time. We note that longer
planning horizons do not provide a better performance as
expected. We also note that the performance gap increases
when 1,4, is reduced. Overall, the system seems relatively
robust to the tuning of the parameters Ty and f,,,, with
the relative differences being of order of 10-20%. However,
it is evident that performance would not scale well to larger
scenarios. It is in this perspective that we have developed the
decentralized architecture described in Section X, which is
evaluated in Section XI-G.
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FIGURE 9. Mission performance using the online iterative replanning
under centralized control.

F. COMPARISON WITH A STATE-OF-THE-ART APPROACH:
TERCIO

In this section we evaluate the proposed anytime exact
method against relevant state-of-the-art approaches. Since
in this paper we are both proposing a new problem model,
the STASP-HMR, and multiple solution methods for it, it was
indeed challenging to find suitable competitors precisely
because of the novelty of the problem.

In particular, one of the fundamental characteristics of the
STASP-HMR is the non-atomicity of tasks, which requires
an explicit decision on the amount of time that each agent
devotes to each task. Instead, most of the existing approaches,
both from the OR and multi-robot literature, are designed
for atomic tasks. Therefore, to possibly make a fair com-
parison, instead of arbitrarily modifying existing methods
(which could be an algorithmic challenge by itself), we
have first converted our benchmark instances to equivalent
instances with atomic tasks. In fact, our algorithms, while
being designed to tackle non-atomic tasks, can work equally
well with atomic tasks. The conversion of the benchmark
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instances was done as follows. Each task is split into a set
of tasks, each one representing a fractional part of the orig-
inal task. The split is done considering the least amount of
workload an agent could do in a given time unit. Each of the
resulting fractional subtasks are precedence-related atomic
tasks with a reward equivalent to the fraction they represent.

We have looked at the literature discussed in Section II
for state-of-the-art competitors for the benchmark set with
atomic tasks. Given the similarity of the STASP-HMR with
VRPs, and in particular with the maximization of reward
collection under limited time budget in TOPs, we have
first looked for competitors in this domain. Unfortunately,
the methods that have been developed in the OR community
to tackle these types of TOPs (always assuming atomic tasks)
do not scale well to the size of our benchmark instances (once
made atomic). For instance, in [27] the largest benchmark
for TOP consists of up to 400 tasks, and 4 agents. Instead,
after the conversion, the number of atomic tasks in our largest
problem instance becomes greater than 6,000 (and we use up
to 20 agents). Therefore, we omit OR methods for compar-
ison since our benchmark instances seem not tractable for
OR heuristics.

In Section II we have also remarked the relationship of the
STASP-HMR with problems and methods for task allocation
in multi-robot systems. However, in this domain rather than
maximizing reward collection under a restricted time budget,
it is more common to consider as objective the minimization
of the mission makespan. In practice, it is tacitly assumed that
the given tasks can or must be completed in the available time,
such that an explicit restriction on the time is not necessary.
We have already pointed out in Section III-C that the STASP-
HMR can be equivalently defined for the case of makespan
minimization and the MILP formulation can be immediately
adapted for it, essentially by changing the objective and
removing the time budget constraint.

Based on the above facts and remarks, we have selected
and implemented Zercio [25] as a state-of-the-art baseline
competitor for our proposed methods. Tercio is a recently pro-
posed algorithm for task assignment, routing, and scheduling
in multi-robot systems. It aims at minimizing the makespan,
such that we had to consider the STASP-HMR with this
objective and unrestricted time budget. Tercio was designed
for and tested on atomic tasks, and explicitly considers the
notion of precedence-related subtasks. It had been tested with
instances of up to 1,000 subtasks. All these reasons make
Tercio particularly suited for our evaluation.

The two solution methods, Tercio and ours, fundamen-
tally differ in the way the problem is decomposed and in
the treatment of non-atomic tasks. Tercio decomposes the
problem into allocations first, route and time assignment
second and does not explicitly consider non-atomic tasks. Our
exact solution method, namely the anytime exact approach
described in Section VIII, decomposes the problem into allo-
cate and sequence first, time assignment second and it gives
non-atomic tasks a proper treatment by explicitly splitting the
workload of tasks among the agents.
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FIGURE 10. Tercio vs. our approach on instances with 5 x 5 (left), 10 x 10 (middle), and 20 x 20 (right) tasks: ratio between the makespans obtained

by Tercio and the ones obtained by our solution approach over time.

In the evaluation, we consider instances of size L x L,
with L € {5, 10, 20}. For each L, we consider 800 problem
instances with teams from 4 up to 20 agents. Each problem
instance is solved using Tercio and our approach. We ran
each solution method for at most 30 minutes and record
the progress of the makespan of the best solutions found.
Note that both solution approaches are anytime algorithms,
meaning that the solution is improved over time. In order to
understand the anytime behavior of each algorithm and their
relative performance, we compute the ratio between Tercio’s
makespan and our approach’s makespan, for each instance,
over the computation time. Fig. 10 shows the distribution of
the ratios over time.

Results shows that, for this set of instances, the makespan
of the solutions computed by Tercio after 30 minutes
increases two-fold with respect to the makespan produced by
the SIE. We also noted that our approach was able to find
optimal solutions to 90% of the instances of size L = 5 and
L = 10 within the allotted time, and within 300 seconds in
most of the cases. The increasing ratiosinthe L = 5and L =
10 plots suggest that the SIE progresses faster than Tercio
in the first minutes of computation, and the performance of
Tercio slows down over time. In the instances of size L = 20,
which are considerably harder for both methods, we observe
that the ratios tend to decrease fast in the first 200 seconds,
but again remain almost constant after several minutes. These
observations can be explained by the increasing complexity
of computation that Tercio exhibits. Tercio iterates over fea-
sible agent allocations, which are computed by means of a
MILP model. After each iteration, a new constraint is added
into the MILP to exclude the agent allocations tried previ-
ously. As a result, the MILP increases in size, slowing down
the overall performance of the algorithm. This performance
bottleneck is more evident in instances with a large number
of (atomic) tasks, such as the ones considered here.

G. PERFORMANCE AND ANALYSIS OF THE
DECENTRALIZED APPROACH
In this section we evaluate the decentralized implementation
presented in Section X. We focus on the loss in mission
performance with respect to an equivalent centralized imple-
mentation, and the sensitivity of the decentralized scheme
on core parameters such as the replanning interval and the
horizon length.

For this analysis, we consider 500 problem instances with
a grid of 20 x 20, i.e., 400 tasks. The total number of robots
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in a mission is fixed to 12. All simulations have a duration
of 48 steps. At the start of the mission, all robots are deployed
at random positions inside the grid environment. They all
compute an initial plan, and then execute the online replan-
ning in an asynchronous way.

As seen in Section X-A, the decentralized scheme involves
communication among the agents. In spatially distributed
missions, task locality may impose limits on the communi-
cation. To evaluate the effect of constrained communication
in the simulations, we let data exchange between two robots
occur only within a fixed communication range, denoted
as Y. To this end, we embed the grid into a Cartesian plane,
and define the distance between two tasks as the Euclidean
norm between the center of the associated cells. Whenever
two robots are within a distance less or equal to iy we let
the agents to exchange data and to synchronize their current
knowledge using the mechanisms described in Section X-A.
We consider two different classes of scenarios. In the
first, agents are able to exchange data without restrictions
(Yr = 00). In the second class, robots can only exchange
data with other robots located within a communication range
Yy = 3. In this way we analyze the impact of incomplete
information.

To measure the performance of the decentralized scheme,
we compare it with a centralized implementation that has a
full knowledge of the environment. These centralized solu-
tions are used to derive bounds that define a baseline metric,
which we use to evaluate the relative performance of the
decentralized implementations with respect to the centralized
one. More precisely, the centralized solution is obtained using
the SIE which also provides a MIP gap. The MIP gap, in turn,
defines an upper bound on the MILP’s objective function.
The ratio between the solution obtained by the decentralized
implementation and this upper bound is then used to compute
the relative gap Gg;;f , which is reported in the plots. Note that
this is a conservative estimate of the performance.

As pointed out in Section X, two of the most impor-
tant parameters that affect the performance of the online
replanning are the length of the look-ahead planning
horizon (Ty) and the replanning frequency (specified by an
interval [t,, 7,]). We perform a sensitivity analysis of these
parameters. We consider different replanning intervals and
horizon lengths. First, we fix a relatively short interval for
replanning and evaluate the effect of the increasing horizon.

Fig. 11 shows the effect of increasing the horizon from 6 up
to 24 steps. We indicate the median value and 25% and 75%
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FIGURE 11. Effect of the look-ahead planning horizon on the
decentralized scheme with full (left), and constrained
communication (right).

error bars for both the communication-constrained (right) and
unconstrained scenarios (left). Intuitively, one would expect
that the longer is the horizon, the better are the plans that
robots compute, which also results into better global mission
plans. Indeed, we observe that the increasing horizon tends
to improve the performance of the team. However, for longer
horizons, the improvement stops and the performance stag-
nates. A similar observation was made in [13], although with-
out an explanation. Regarding the relationship between these
parameters and the amount of information exchanged, we
note that information is better exploited with longer horizons.
In the communication limited scenarios, longer horizons only
provide a marginally better performance.

We conjectured that the performance stagnation effect
described above is due to the fact that, for longer horizons,
the corresponding MILPs become harder to solve. However,
after an examination of the distribution of the MIP gap values
over the increasing horizon length during the simulations
(~ 70, 000), we noticed that the increase of problem com-
plexity was not significant. In fact, most of the solutions
remain within 2 % from the optimal solution. We conclude
that this behavior is due to the asynchronicity of the online
scheme and the effect of incomplete information regarding
the planned actions of other agents. In other words, the whole
system becomes highly dynamic and the benefits of longer
planning horizons are greatly diminished by this dynamism.

Next, we evaluate the impact of the replanning frequency.
We consider three replanning intervals, [3, 6], [6, 9], and
[9, 12], that are used to define the replanning frequency as
described in Section IX. For a given scenario, the inter-
val remains constant during the simulation. In the simula-
tion, each agent randomly chooses the number of time steps
between consecutive replanning stages from that interval. The
goal is to analyze the case when agents perform planning
in an asynchronous way, and have the freedom to replan in
an adaptive way. Fig. 12 compares the performance that is
obtained using the different replanning intervals. When the
replanning occurs less frequently, the performance tends to
deteriorate sharply when communication is limited. When
communication is not an issue, the frequency of replanning is
not central, but nevertheless compensates the small decrease
in performance due to the inconsistent information.

Xil. DEMONSTRATORS
This section describes two real-world deployments of
the STASP-HMR model that we have implemented for
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FIGURE 12. Effect of the replanning frequency on the decentralized
scheme with full (left), and constrained communication (right).

cooperative mission planning. The first one relates to wilder-
ness search and rescue operations (WiSAR in short) using
a team of heterogeneous agents. The second one involves a
team of mobile networked robots and illustrates the use of
spatio-temporal constraints.

A. MISSION SUPPORT SYSTEM FOR WiSAR

In the WiSAR scenario, the location of a stationary
non-evasive target (e.g., an injured hiker) must be identified
within a relatively short time. To accomplish this mission,
a group of searcher agents, each of them with possibly differ-
ent sensory-motor characteristics, is ready to be deployed in
the area. This scenario was implemented in the context of the
Swiss-funded project SWARMIX (www . swarmix.org).

We can convey many different types of information into
a model based on the STASP-HMR and use the resulting
model to synthesize team-level search and rescue mission
plans. In the WiSAR scenario, tasks consist in autonomous
searching activities done by the agents inside well-defined
sectors. A completed task means that an accurate search
for the target has been performed in the entire task sector,
returning yes/no about the presence of the target or of target’s
cues. The goal is to define mission plans maximizing the
outcome of search activities within the time limits of the
mission. A mission plan is an allocation of sectors and
the definition of schedules that each agent should follow.

To address the practical challenges of a real-world mis-
sion deployment, the STASP-HMR model and the mission
planning algorithms have been implemented as a part of
a more comprehensive mission support system (MSS) for
WiSAR. The system has been proposed as a practical tool
that a mission commander can use to delineate mission plans
and to monitor the execution of the mission [21]. Assuming
the presence of an underlying communication infrastructure
enabling the MSS and the WiSAR agents to continuously
exchange mission-relevant information, the MSS supervises
the activities of the agents and the execution of the mission
plan. A graphical visualization and a simulation tool of the
computed plans — both at the trajectory and exploration gain
level — enable the commander to revise the current plan, trig-
ger replanning, and dispatch new instructions to the searchers
using the communication network.

In the SWARMIX project, the MSS was successfully
integrated with different platforms, including aerial robots
(both fixed-wing and quadcopters), an intelligent dog collar
to track dogs’ movement and to support the execution of
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directional commands, and smartphones that support human
rescuers during the mission. A full demonstration was carried
out in Budapest, Hungary, and featured four aerial robots,
two rescue dogs, and three human rescuers carrying smart-
phone devices. All agents were connected through a mobile
ad hoc wireless network. An overview of the SWARMIX
project achievements was presented in [46] and is available
at https://youtu.be/WWUpgY3RoUw. Screenshots of
the MSS interface are shown in Fig. 13 and in the video
attachment. We refer the interested reader to [21] for more
details about the MSS and the WiSAR application.

FIGURE 13. (Left) A screenshot of the control center GUI that shows the
completion map, routes, task assignments, and agents’ trajectories.
(Right) A screenshot of the smartphone application used by the rescuers
to receive mission data and send status data to the MSS through a
wireless network.

B. MOBILE ROBOTIC TESTBED

The cooperative mission planning using the STASP-HMR
was also demonstrated indoor, using a mobile robotic testbed.
As experimental platform we have used the foot-bot: a
small differential drive robot (about 15 cm wide and 20 cm
high), developed in the SWARMANOID project (www.
swarmanoid.org). We equipped each foot-bot with a
wireless interface that operates at the 2.4 Ghz band and
whose transmission power has been artificially constrained to
enforce the use of multi-hop routes in our lab environment.
Specifically, we have used Wi-Fi adapters with attenuators
attached between the adapter and their external antennas.
To set up a multi-hop wireless scenario we enforced a trans-
mission power of 1 mW, a bit rate of 54 Mbps, and a signal
attenuation of 20 dBm. This setup was sufficient to reduce the
transmission range of the network to below 1.25 m.

In the video attachment, a team of robots executes one
stage of the mission plan (replanning could be performed
iteratively, similarly to the approach described in Section IX).
A mission consists of scouting a number of specified areas
of interests. Each area represents a task and we consider
a total of 16 tasks embedded in a two-dimensional grid of
dimension 4 x 4 cells. This setup emulates reconnaissance or
search and rescue missions where multiple robots scout the
environment for objects of interest. The demonstration also
replicates the scenario where planning is performed using a
centralized controller and spatio-temporal directives are used
to balance task completion and wireless network connectivity
in the computed plans. In this example application, wireless
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connectivity is related to the data exchange between the
mobile agents and the centralized controller using a mobile
multi-hop mobile wireless network.

We consider a total of 6 mobile robots, A = {ay, ..., ag}.
One static robot plays the role of the centralized controller,
denoted as a., and it is located in the upper left corner of the
area. Each mobile robot generates 1 Mbps of data towards
the controller. A dynamic routing protocol is used to compute
data routes based on the location of the robots [19]. Mission
plans are computed following a communication-aware strat-
egy, in the form of directives, that selects a subset of agents
(Ag C A), called relays, to conform a chain, connected
to the controller. Agents Ag are numbered a, 1, ..., ar |ag|-
Directives are classified into two groups: those that promote
the formation of the chain, and those that promote the con-
nectivity between the relays and the rest of the team A \ Ag.

The formation of the chain is guided by the first group of
instant directives:

(ar1}. {ack, 1) vt (36)
(ari} {ari-1},0) Vi, 2<i=<n. (37)

where (A1, Az, t) denotes a network directive between group
A and A; at time ¢ (see Section VI-A). The directives con-
sider a bound d = 1.25m which represents the transmission
range of the wireless network.

Note that network directives specified by (36) link the
controller to the first member of the chain, while those rep-
resented by (37) join the remaining elements of Ag to form a
chain.

The connectivity between the rest of the team and the chain
is promoted by directives

({ax}, {ac} UAR,t) Vap € A\ Ag, t. (38)

The directives are treated as soft constraints, and we
include rewards in the objective function to promote their
occurrence. We consider a ratio of 3 1 between the
rewards of the directives corresponding to the formation of
the chain ((36), and (commrelay:2)) and those corresponding
to the connectivity of the rest of the agents to the chain ((38)).
This decision is motivated by the fact that the formation of the
chain is the key aspect of this strategy, and without it, the com-
plete team can become permanently disconnected from the
centralized controller. In the demonstrator, we observed an
increase of received packets at the controller of up to 30% via
the communication-aware strategy, when using two relays.

XIll. CONCLUSION

This work addressed the problem of mission planning in het-
erogeneous multi-agent/robot systems for missions that are
composed of spatially distributed tasks. Tasks are considered
as non-atomic and providing a utility for either a full or
a partial completion. Team heterogeneity makes the agents
showing different efficiency when dealing with the same
task. The mission planning problem (named STASP-HMR) is
defined as the joint problem of: selecting tasks, assign subset
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of tasks to each agent based on its task-solving efficiency, and
for each subset define a schedule (time duration for dealing
with the task) and routing (task sequence). The goal is to
jointly solve all these sub-problems maximizing the overall
utility gathered in a given time budget. The mission planning
model is justified in many real-world scenarios that precisely
present the characteristics considered here.

The mission planning problem is formalized as a MILP,
a formulation that can enjoy the availability of effective stan-
dard solvers with performance guarantees, and that is flexible
enough to easily accommodate the addition and removal of
multiple constraints. An example of this versatility is the
definition of a set of additional linear constraints that allow
the time control of proximity relations among agent groups
(e.g., for boosting communications and cooperation, or to
avoid mutual interference). The mission planning model can
be used to analyze certain properties of the system, such as
the benefits of time-extended planning and the advantages of
considering non-atomic tasks, that let the system to partially
fulfill some tasks and better distribute the effort of the agents.

The STASP-HMR is proven to be NP-hard, a result that
has urged us to find efficient solution methods. At this aim,
we proposed two anytime algorithms: one matheuristic based
on GAs, and one bounded optimal algorithm. Both algorithms
significantly improve the performance of standard solvers,
each offering specific advantages. We benchmarked our
optimal solution approach against a state-of-the-art method
for task allocation and scheduling, obtaining solutions that
improve the performance of the team by a factor of 2.

The decentralized implementation, obtained top-down
from the main MILP model, makes the STASP-HMR use-
ful in practical scenarios where a continual online itera-
tive replanning is necessary (e.g., to operate in closed-loop
interaction with mission enrollment). Using simulations,
we studied the impact of the different parameters of the online
iterative replanning on team performance in both centralized
and decentralized setups. We showed the excellent scalabil-
ity of the decentralized algorithm, which dramatically drops
down computation times, and only incurs in losses of order
of 20% compared to a centralized solution.

Lastly, we described two real-world deployments of the
STASP-HMR: an application in the search and rescue
domain, and an implementation with networked mobile
robots. The deployments demonstrate versatility, usability,
and the practical effectiveness of the proposed models and
algorithms.

Future work includes considering other types of task effi-
ciency models (e.g., nonlinear, super-additive) and a compre-
hensive treatment of task dependencies, e.g., time-windows
for task execution, multi-robot tasks that require certain com-
bination of skills.
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